From f63b7466e49a9caff40ac4b4a79b22dfc4ee8adf Mon Sep 17 00:00:00 2001
From: Phil Steitz
Date: Sun, 20 Oct 2013 15:58:15 +0000
Subject: [PATCH] Removed file inadvertently committed in r1533853
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1533922 13f79535-47bb-0310-9956-ffa450edef68
---
.../stat/inference/KolmogorovSmirnovTest.java | 654 ------------------
1 file changed, 654 deletions(-)
delete mode 100644 src/main/java/org/apache/commons/math3/stat/inference/KolmogorovSmirnovTest.java
diff --git a/src/main/java/org/apache/commons/math3/stat/inference/KolmogorovSmirnovTest.java b/src/main/java/org/apache/commons/math3/stat/inference/KolmogorovSmirnovTest.java
deleted file mode 100644
index deba1f5cc..000000000
--- a/src/main/java/org/apache/commons/math3/stat/inference/KolmogorovSmirnovTest.java
+++ /dev/null
@@ -1,654 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with this
- * work for additional information regarding copyright ownership. The ASF
- * licenses this file to You under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law
- * or agreed to in writing, software distributed under the License is
- * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- * KIND, either express or implied. See the License for the specific language
- * governing permissions and limitations under the License.
- */
-
-package org.apache.commons.math3.stat.inference;
-
-import java.math.BigDecimal;
-import java.util.Arrays;
-import java.util.Iterator;
-
-import org.apache.commons.math3.distribution.KolmogorovSmirnovDistribution;
-import org.apache.commons.math3.distribution.RealDistribution;
-import org.apache.commons.math3.exception.MathArithmeticException;
-import org.apache.commons.math3.exception.MathIllegalArgumentException;
-import org.apache.commons.math3.exception.NullArgumentException;
-import org.apache.commons.math3.exception.NumberIsTooLargeException;
-import org.apache.commons.math3.exception.OutOfRangeException;
-import org.apache.commons.math3.exception.TooManyIterationsException;
-import org.apache.commons.math3.exception.util.LocalizedFormats;
-import org.apache.commons.math3.fraction.BigFraction;
-import org.apache.commons.math3.fraction.BigFractionField;
-import org.apache.commons.math3.fraction.FractionConversionException;
-import org.apache.commons.math3.linear.Array2DRowFieldMatrix;
-import org.apache.commons.math3.linear.Array2DRowRealMatrix;
-import org.apache.commons.math3.linear.FieldMatrix;
-import org.apache.commons.math3.linear.RealMatrix;
-import org.apache.commons.math3.util.CombinatoricsUtils;
-import org.apache.commons.math3.util.FastMath;
-import org.apache.commons.math3.util.MathArrays;
-
-/**
- * Implementation of the
- * Kolmogorov-Smirnov (K-S) test for equality of continuous distributions.
- *
- * The K-S test uses a statistic based on the maximum deviation of the empirical
- * distribution of sample data points from the distribution expected under the
- * null hypothesis. Specifically, what is computed is \(D_n=\sup_x
- * |F_n(x)-F(x)|\), where \(F\) is the expected distribution and \(F_n\) is the
- * empirical distribution of the \(n\) sample data points. The distribution of
- * \(D_n\) is estimated using a method based on [1] with certain quick decisions
- * for extreme values given in [2].
- *
- *
- * References:
- *
- * Note that [1] contains an error in computing h, refer to MATH-437 for
- * details.
- *
- *
- * @since 3.3
- * @version $Id$
- */
-public class KolmogorovSmirnovTest {
-
- /**
- * Bound on the number of partial sums in
- * {@link #ksSum(double, double, long)}
- */
- private static final long MAXIMUM_PARTIAL_SUM_COUNT = 100000;
-
- /** Convergence criterion for {@link #ksSum(double, double, long)} */
- private static final double KS_SUM_CAUCHY_CRITERION = 1e-15;
-
- /** Cutoff for default 2-sample test to use K-S distribution approximation */
- private static final long SMALL_SAMPLE_PRODUCT = 10000;
-
- /**
- * Computes the p-value, or observed significance level, of a
- * one-sample
- * Kolmogorov-Smirnov test evaluating the null hypothesis that
- * {@code data} conforms to {@code distribution}. If {@code exact} is true,
- * the distribution used to compute the p-value is computed using extended
- * precision. See {@link #cdfExact(double, int)}.
- *
- * @param distribution reference distribution
- * @param data sample being being evaluated
- * @param exact whether or not to force exact computation of the p-value
- * @return the p-value associated with the null hypothesis that {@code data}
- * is a sample from {@code distribution}
- */
- public double kolmogorovSmirnovTest(RealDistribution distribution, double[] data, boolean exact) {
- return 1d - cdf(kolmogorovSmirnovStatistic(distribution, data), data.length, exact);
- }
-
- /**
- * Computes the one-sample Kolmogorov-Smirnov test statistic, \(D_n=\sup_x
- * |F_n(x)-F(x)|\) where \(F\) is the distribution (cdf) function associated
- * with {@code distribution}, \(n\) is the length of {@code data} and
- * \(F_n\) is the empirical distribution that puts mass \(1/n\) at each of
- * the values in {@code data}.
- *
- * @param distribution reference distribution
- * @param data sample being evaluated
- * @return Kolmogorov-Smirnov statistic \(D_n\)
- * @throws MathIllegalArgumentException if {@code data} does not have length
- * at least 2
- */
- public double kolmogorovSmirnovStatistic(RealDistribution distribution, double[] data) {
- final int n = data.length;
- final double nd = n;
- final double[] dataCopy = new double[n];
- System.arraycopy(data, 0, dataCopy, 0, n);
- Arrays.sort(dataCopy);
- double d = 0d;
- for (int i = 1; i <= n; i++) {
- final double yi = distribution.cumulativeProbability(dataCopy[i - 1]);
- final double currD = FastMath.max(yi - (i - 1) / nd, i / nd - yi);
- if (currD > d) {
- d = currD;
- }
- }
- return d;
- }
-
- /**
- * Computes the p-value, or observed significance level, of a
- * two-sample
- * Kolmogorov-Smirnov test evaluating the null hypothesis that {@code x}
- * and {@code y} are samples drawn from the same probability distribution.
- * If {@code exact} is true, the discrete distribution of the test statistic
- * is computed and used directly; otherwise the asymptotic
- * (Kolmogorov-Smirnov) distribution is used to estimate the p-value.
- *
- * @param x first sample dataset
- * @param y second sample dataset
- * @param exact whether or not the exact distribution of the \(D\( statistic
- * is used
- * @return p-value associated with the null hypothesis that {@code x} and
- * {@code y} represent samples from the same distribution
- */
- public double kolmogorovSmirnovTest(double[] x, double[] y, boolean exact) {
- if (exact) {
- return exactP(kolmogorovSmirnovStatistic(x, y), x.length, y.length, false);
- } else {
- return approximateP(kolmogorovSmirnovStatistic(x, y), x.length, y.length);
- }
- }
-
- /**
- * Computes the p-value, or observed significance level, of a
- * two-sample
- * Kolmogorov-Smirnov test evaluating the null hypothesis that {@code x}
- * and {@code y} are samples drawn from the same probability distribution.
- * If the product of the lengths of x and y is less than 10,000, the
- * discrete distribution of the test statistic is computed and used
- * directly; otherwise the asymptotic (Kolmogorov-Smirnov) distribution is
- * used to estimate the p-value.
- *
- * @param x first sample dataset
- * @param y second sample dataset
- * @return p-value associated with the null hypothesis that {@code x} and
- * {@code y} represent samples from the same distribution
- */
- public double kolmogorovSmirnovTest(double[] x, double[] y) {
- if (x.length * y.length < SMALL_SAMPLE_PRODUCT) {
- return kolmogorovSmirnovTest(x, y, true);
- } else {
- return kolmogorovSmirnovTest(x, y, false);
- }
- }
-
- /**
- * Computes the two-sample Kolmogorov-Smirnov test statistic, \(D_n,m=\sup_x
- * |F_n(x)-F_m(x)|\) \(n\) is the length of {@code x}, \(m\) is the length
- * of {@code y}, \(F_n\) is the empirical distribution that puts mass
- * \(1/n\) at each of the values in {@code x} and \(F_m\) is the empirical
- * distribution of the {@code y} values.
- *
- * @param x first sample
- * @param y second sample
- * @return test statistic \(D_n,m\) used to evaluate the null hypothesis
- * that {@code x} and {@code y} represent samples from the same
- * underlying distribution
- * @throws MathIllegalArgumentException if either {@code x} or {@code y}
- * does not have length at least 2.
- */
- public double kolmogorovSmirnovStatistic(double[] x, double[] y) {
- checkArray(x);
- checkArray(y);
- // Copy and sort the sample arrays
- final double[] sx = MathArrays.copyOf(x);
- final double[] sy = MathArrays.copyOf(y);
- Arrays.sort(sx);
- Arrays.sort(sy);
- final int n = sx.length;
- final int m = sy.length;
-
- // Compare empirical distribution cdf values at each (combined) sample
- // point.
- // D_n.m is the max difference.
- // cdf value is (insertion point - 1) / length if not an element;
- // index / n if element is in the array.
- double supD = 0d;
- // First walk x points
- for (int i = 0; i < n; i++) {
- final double cdf_x = (i + 1d) / n;
- final int yIndex = Arrays.binarySearch(sy, sx[i]);
- final double cdf_y = yIndex >= 0 ? (yIndex + 1d) / m : (-yIndex - 1d) / m;
- final double curD = FastMath.abs(cdf_x - cdf_y);
- if (curD > supD) {
- supD = curD;
- }
- }
- // Now look at y
- for (int i = 0; i < m; i++) {
- final double cdf_y = (i + 1d) / m;
- final int xIndex = Arrays.binarySearch(sx, sy[i]);
- final double cdf_x = xIndex >= 0 ? (xIndex + 1d) / n : (-xIndex - 1d) / n;
- final double curD = FastMath.abs(cdf_x - cdf_y);
- if (curD > supD) {
- supD = curD;
- }
- }
- return supD;
- }
-
- /**
- * Computes the p-value, or observed significance level, of a
- * one-sample
- * Kolmogorov-Smirnov test evaluating the null hypothesis that
- * {@code data} conforms to {@code distribution}.
- *
- * @param distribution reference distribution
- * @param data sample being being evaluated
- * @return the p-value associated with the null hypothesis that {@code data}
- * is a sample from {@code distribution}
- */
- public double kolmogorovSmirnovTest(RealDistribution distribution, double[] data) {
- return kolmogorovSmirnovTest(distribution, data, false);
- }
-
- /**
- * Performs a
- * Kolmogorov-Smirnov test evaluating the null hypothesis that
- * {@code data} conforms to {@code distribution}.
- *
- * @param distribution reference distribution
- * @param data sample being being evaluated
- * @param alpha significance level of the test
- * @return true iff the null hypothesis that {@code data} is a sample from
- * {@code distribution} can be rejected with confidence 1 -
- * {@code alpha}
- */
- public boolean kolmogorovSmirnovTest(RealDistribution distribution, double[] data, double alpha) {
- if ((alpha <= 0) || (alpha > 0.5)) {
- throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL, alpha, 0, 0.5);
- }
- return kolmogorovSmirnovTest(distribution, data) < alpha;
- }
-
- /**
- * Calculates {@code P(D_n < d)} using method described in [1] with quick
- * decisions for extreme values given in [2] (see above). The result is not
- * exact as with {@link KolmogorovSmirnovDistribution#cdfExact(double)}
- * because calculations are based on {@code double} rather than
- * {@link org.apache.commons.math3.fraction.BigFraction}.
- *
- * @param d statistic
- * @return the two-sided probability of {@code P(D_n < d)}
- * @throws MathArithmeticException if algorithm fails to convert {@code h}
- * to a {@link org.apache.commons.math3.fraction.BigFraction} in
- * expressing {@code d} as {@code (k - h) / m} for integer
- * {@code k, m} and {@code 0 <= h < 1}.
- */
- public double cdf(double d, int n)
- throws MathArithmeticException {
- return cdf(d, n, false);
- }
-
- /**
- * Calculates {@code P(D_n < d)}. The result is exact in the sense that
- * BigFraction/BigReal is used everywhere at the expense of very slow
- * execution time. Almost never choose this in real applications unless you
- * are very sure; this is almost solely for verification purposes. Normally,
- * you would choose {@link KolmogorovSmirnovDistribution#cdf(double)}. See
- * the class javadoc for definitions and algorithm description.
- *
- * @param d statistic
- * @return the two-sided probability of {@code P(D_n < d)}
- * @throws MathArithmeticException if the algorithm fails to convert
- * {@code h} to a
- * {@link org.apache.commons.math3.fraction.BigFraction} in
- * expressing {@code d} as {@code (k - h) / m} for integer
- * {@code k, m} and {@code 0 <= h < 1}.
- */
- public double cdfExact(double d, int n)
- throws MathArithmeticException {
- return cdf(d, n, true);
- }
-
- /**
- * Calculates {@code P(D_n < d)} using method described in [1] with quick
- * decisions for extreme values given in [2] (see above).
- *
- * @param d statistic
- * @param exact whether the probability should be calculated exact using
- * {@link org.apache.commons.math3.fraction.BigFraction} everywhere
- * at the expense of very slow execution time, or if {@code double}
- * should be used convenient places to gain speed. Almost never
- * choose {@code true} in real applications unless you are very sure;
- * {@code true} is almost solely for verification purposes.
- * @return the two-sided probability of {@code P(D_n < d)}
- * @throws MathArithmeticException if algorithm fails to convert {@code h}
- * to a {@link org.apache.commons.math3.fraction.BigFraction} in
- * expressing {@code d} as {@code (k - h) / m} for integer
- * {@code k, m} and {@code 0 <= h < 1}.
- */
- public double cdf(double d, int n, boolean exact)
- throws MathArithmeticException {
-
- final double ninv = 1 / ((double) n);
- final double ninvhalf = 0.5 * ninv;
-
- if (d <= ninvhalf) {
- return 0;
- } else if (ninvhalf < d && d <= ninv) {
- double res = 1;
- final double f = 2 * d - ninv;
- // n! f^n = n*f * (n-1)*f * ... * 1*x
- for (int i = 1; i <= n; ++i) {
- res *= i * f;
- }
- return res;
- } else if (1 - ninv <= d && d < 1) {
- return 1 - 2 * Math.pow(1 - d, n);
- } else if (1 <= d) {
- return 1;
- }
- return exact ? exactK(d, n) : roundedK(d, n);
- }
-
- /**
- * Calculates the exact value of {@code P(D_n < d)} using method described
- * in [1] and {@link org.apache.commons.math3.fraction.BigFraction} (see
- * above).
- *
- * @param d statistic
- * @return the two-sided probability of {@code P(D_n < d)}
- * @throws MathArithmeticException if algorithm fails to convert {@code h}
- * to a {@link org.apache.commons.math3.fraction.BigFraction} in
- * expressing {@code d} as {@code (k - h) / m} for integer
- * {@code k, m} and {@code 0 <= h < 1}.
- */
- private double exactK(double d, int n)
- throws MathArithmeticException {
-
- final int k = (int) Math.ceil(n * d);
-
- final FieldMatrix H = this.createH(d, n);
- final FieldMatrix Hpower = H.power(n);
-
- BigFraction pFrac = Hpower.getEntry(k - 1, k - 1);
-
- for (int i = 1; i <= n; ++i) {
- pFrac = pFrac.multiply(i).divide(n);
- }
-
- /*
- * BigFraction.doubleValue converts numerator to double and the
- * denominator to double and divides afterwards. That gives NaN quite
- * easy. This does not (scale is the number of digits):
- */
- return pFrac.bigDecimalValue(20, BigDecimal.ROUND_HALF_UP).doubleValue();
- }
-
- /**
- * Calculates {@code P(D_n < d)} using method described in [1] and doubles
- * (see above).
- *
- * @param d statistic
- * @return the two-sided probability of {@code P(D_n < d)}
- * @throws MathArithmeticException if algorithm fails to convert {@code h}
- * to a {@link org.apache.commons.math3.fraction.BigFraction} in
- * expressing {@code d} as {@code (k - h) / m} for integer
- * {@code k, m} and {@code 0 <= h < 1}.
- */
- private double roundedK(double d, int n)
- throws MathArithmeticException {
-
- final int k = (int) Math.ceil(n * d);
- final FieldMatrix HBigFraction = this.createH(d, n);
- final int m = HBigFraction.getRowDimension();
-
- /*
- * Here the rounding part comes into play: use RealMatrix instead of
- * FieldMatrix
- */
- final RealMatrix H = new Array2DRowRealMatrix(m, m);
-
- for (int i = 0; i < m; ++i) {
- for (int j = 0; j < m; ++j) {
- H.setEntry(i, j, HBigFraction.getEntry(i, j).doubleValue());
- }
- }
-
- final RealMatrix Hpower = H.power(n);
-
- double pFrac = Hpower.getEntry(k - 1, k - 1);
-
- for (int i = 1; i <= n; ++i) {
- pFrac *= (double) i / (double) n;
- }
-
- return pFrac;
- }
-
- /***
- * Creates {@code H} of size {@code m x m} as described in [1] (see above).
- *
- * @param d statistic
- * @return H matrix
- * @throws NumberIsTooLargeException if fractional part is greater than 1
- * @throws FractionConversionException if algorithm fails to convert
- * {@code h} to a
- * {@link org.apache.commons.math3.fraction.BigFraction} in
- * expressing {@code d} as {@code (k - h) / m} for integer
- * {@code k, m} and {@code 0 <= h < 1}.
- */
- private FieldMatrix createH(double d, int n)
- throws NumberIsTooLargeException, FractionConversionException {
-
- final int k = (int) Math.ceil(n * d);
-
- final int m = 2 * k - 1;
- final double hDouble = k - n * d;
-
- if (hDouble >= 1) {
- throw new NumberIsTooLargeException(hDouble, 1.0, false);
- }
-
- BigFraction h = null;
-
- try {
- h = new BigFraction(hDouble, 1.0e-20, 10000);
- } catch (final FractionConversionException e1) {
- try {
- h = new BigFraction(hDouble, 1.0e-10, 10000);
- } catch (final FractionConversionException e2) {
- h = new BigFraction(hDouble, 1.0e-5, 10000);
- }
- }
-
- final BigFraction[][] Hdata = new BigFraction[m][m];
-
- /*
- * Start by filling everything with either 0 or 1.
- */
- for (int i = 0; i < m; ++i) {
- for (int j = 0; j < m; ++j) {
- if (i - j + 1 < 0) {
- Hdata[i][j] = BigFraction.ZERO;
- } else {
- Hdata[i][j] = BigFraction.ONE;
- }
- }
- }
-
- /*
- * Setting up power-array to avoid calculating the same value twice:
- * hPowers[0] = h^1 ... hPowers[m-1] = h^m
- */
- final BigFraction[] hPowers = new BigFraction[m];
- hPowers[0] = h;
- for (int i = 1; i < m; ++i) {
- hPowers[i] = h.multiply(hPowers[i - 1]);
- }
-
- /*
- * First column and last row has special values (each other reversed).
- */
- for (int i = 0; i < m; ++i) {
- Hdata[i][0] = Hdata[i][0].subtract(hPowers[i]);
- Hdata[m - 1][i] = Hdata[m - 1][i].subtract(hPowers[m - i - 1]);
- }
-
- /*
- * [1] states: "For 1/2 < h < 1 the bottom left element of the matrix
- * should be (1 - 2*h^m + (2h - 1)^m )/m!" Since 0 <= h < 1, then if h >
- * 1/2 is sufficient to check:
- */
- if (h.compareTo(BigFraction.ONE_HALF) == 1) {
- Hdata[m - 1][0] = Hdata[m - 1][0].add(h.multiply(2).subtract(1).pow(m));
- }
-
- /*
- * Aside from the first column and last row, the (i, j)-th element is
- * 1/(i - j + 1)! if i - j + 1 >= 0, else 0. 1's and 0's are already
- * put, so only division with (i - j + 1)! is needed in the elements
- * that have 1's. There is no need to calculate (i - j + 1)! and then
- * divide - small steps avoid overflows. Note that i - j + 1 > 0 <=> i +
- * 1 > j instead of j'ing all the way to m. Also note that it is started
- * at g = 2 because dividing by 1 isn't really necessary.
- */
- for (int i = 0; i < m; ++i) {
- for (int j = 0; j < i + 1; ++j) {
- if (i - j + 1 > 0) {
- for (int g = 2; g <= i - j + 1; ++g) {
- Hdata[i][j] = Hdata[i][j].divide(g);
- }
- }
- }
- }
-
- return new Array2DRowFieldMatrix(BigFractionField.getInstance(), Hdata);
- }
-
- /**
- * Verifies that array has length at least 2, throwing MIAE if not.
- *
- * @param array array to test
- * @throws NullArgumentException if array is null
- * @throws MathIllegalArgumentException if array is too short
- */
- private void checkArray(double[] array) {
- if (array == null) {
- throw new NullArgumentException(LocalizedFormats.NULL_NOT_ALLOWED);
- }
- if (array.length < 2) {
- throw new MathIllegalArgumentException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
- array.length, 2);
- }
- }
-
- /**
- * Compute \( \sum_{k=-\infty}^\infty (-1)^k e^{-2 k^2 x^2} = 1 + 2
- * \sum_{k=1}^\infty (-1)^k e^{-2 k^2 x^2} = \frac{\sqrt{2\pi}}{x}
- * \sum_{k=1}^\infty \exp(-(2k-1)^2\pi^2/(8x^2)) \) See e.g. J. Durbin
- * (1973), Distribution Theory for Tests Based on the Sample Distribution
- * Function. SIAM. The 'standard' series expansion obviously cannot be used
- * close to 0; we use the alternative series for x < 1, and a rather crude
- * estimate of the series remainder term in this case, in particular using
- * that \(ue^(-lu^2) \le e^(-lu^2 + u) \le e^(-(l-1)u^2 - u^2+u) \le
- * e^(-(l-1))\) provided that u and l are >= 1. (But note that for
- * reasonable tolerances, one could simply take 0 as the value for x < 0.2,
- * and use the standard expansion otherwise.)
- */
- public double pkstwo(double x, double tol) {
- final double M_PI_2 = Math.PI / 2;
- final double M_PI_4 = Math.PI / 4;
- final double M_1_SQRT_2PI = 1 / Math.sqrt(Math.PI * 2);
- double newx, old, s;
- int k;
- final int k_max = (int) Math.sqrt(2 - Math.log(tol));
- if (x < 1) {
- final double z = -(M_PI_2 * M_PI_4) / (x * x);
- final double w = Math.log(x);
- s = 0;
- for (k = 1; k < k_max; k += 2) {
- s += Math.exp(k * k * z - w);
- }
- return s / M_1_SQRT_2PI;
- } else {
- final double z = -2 * x * x;
- s = -1;
- k = 1;
- old = 0;
- newx = 1;
- while (Math.abs(old - newx) > tol) {
- old = newx;
- newx += 2 * s * Math.exp(z * k * k);
- s *= -1;
- k++;
- }
- return newx;
- }
- }
-
- /**
- * Computes \( 1 + 2 \sum_{i=1}^\infty (-1)^i e^{-2 i^2 t^2} \) stopping
- * when successive partial sums are within {@code tolerance} of one another,
- * or when {@code maxIter} partial sums have been computed. If the sum does
- * not converge before {@code maxIter} iterations a
- * {@link TooManyIterationsException} is thrown.
- *
- * @param t argument
- * @param tolerance Cauchy criterion for partial sums
- * @param maxIter maximum number of partial sums to compute
- * @throws TooManyIterationsException if the series does not converge
- */
- public double ksSum(double t, double tolerance, long maxIter) {
- final double x = -2 * t * t;
- double sign = -1;
- int i = 1;
- double lastPartialSum = -1d;
- double partialSum = 0.5d;
- long iterationCount = 0;
- while (FastMath.abs(lastPartialSum - partialSum) > tolerance && iterationCount < maxIter) {
- lastPartialSum = partialSum;
- partialSum += sign * FastMath.exp(x * i * i);
- sign *= -1;
- i++;
- }
- if (iterationCount == maxIter) {
- throw new TooManyIterationsException(maxIter);
- }
- return partialSum * 2;
- }
-
- public double exactP(double d, int n, int m, boolean strict) {
- Iterator combinationsIterator = CombinatoricsUtils.combinationsIterator(n + m, n);
- long tail = 0;
- final double[] nSet = new double[n];
- final double[] mSet = new double[m];
- while (combinationsIterator.hasNext()) {
- // Generate an n-set
- final int[] nSetI = combinationsIterator.next();
- // Copy the n-set to nSet and its complement to mSet
- int j = 0;
- int k = 0;
- for (int i = 0; i < n + m; i++) {
- if (j < n && nSetI[j] == i) {
- nSet[j++] = i;
- } else {
- mSet[k++] = i;
- }
- }
- final double curD = kolmogorovSmirnovStatistic(nSet, mSet);
- if (curD > d) {
- tail++;
- } else if (curD == d && !strict) {
- tail++;
- }
- }
- return (double) tail / (double) CombinatoricsUtils.binomialCoefficient(n + m, n);
- }
-
- public double approximateP(double d, int n, int m) {
- return 1 - ksSum(d * FastMath.sqrt((double) (m * n) / (double) (m + n)), KS_SUM_CAUCHY_CRITERION,
- MAXIMUM_PARTIAL_SUM_COUNT);
- }
-
-}