Modified KolmogororSmirnovTest 2-sample test to use random jitter to break ties in input data. JIRA: MATH-1246.
This commit is contained in:
parent
5f9cfa6ebf
commit
f7ab3a70ec
|
@ -60,7 +60,9 @@ If the output is not quite correct, check for invisible trailing spaces!
|
||||||
synchronization is now performed on the coefficient list instead of the class.
|
synchronization is now performed on the coefficient list instead of the class.
|
||||||
</action>
|
</action>
|
||||||
<action dev="psteitz" type="update" issue="MATH-1246">
|
<action dev="psteitz" type="update" issue="MATH-1246">
|
||||||
Added bootstrap method to 2-sample KolmogorovSmirnovTest.
|
Modified 2-sample KolmogorovSmirnovTest to handle ties in sample data. By default,
|
||||||
|
ties are broken by adding random jitter to input data. Also added bootstrap method
|
||||||
|
analogous to ks.boot in R Matching package.
|
||||||
</action>
|
</action>
|
||||||
<action dev="psteitz" type="update" issue="MATH-1287"> <!-- backported to 3.6 -->
|
<action dev="psteitz" type="update" issue="MATH-1287"> <!-- backported to 3.6 -->
|
||||||
Added constructors taking sample data as arguments to enumerated real and integer distributions.
|
Added constructors taking sample data as arguments to enumerated real and integer distributions.
|
||||||
|
|
|
@ -29,6 +29,23 @@ public class JDKRandomGenerator extends Random implements RandomGenerator {
|
||||||
/** Serializable version identifier. */
|
/** Serializable version identifier. */
|
||||||
private static final long serialVersionUID = -7745277476784028798L;
|
private static final long serialVersionUID = -7745277476784028798L;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a new JDKRandomGenerator with a default seed.
|
||||||
|
*/
|
||||||
|
public JDKRandomGenerator() {
|
||||||
|
super();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a new JDKRandomGenerator with the given seed.
|
||||||
|
*
|
||||||
|
* @param seed initial seed
|
||||||
|
* @since 3.6
|
||||||
|
*/
|
||||||
|
public JDKRandomGenerator(int seed) {
|
||||||
|
setSeed(seed);
|
||||||
|
}
|
||||||
|
|
||||||
/** {@inheritDoc} */
|
/** {@inheritDoc} */
|
||||||
@Override
|
@Override
|
||||||
public void setSeed(int seed) {
|
public void setSeed(int seed) {
|
||||||
|
|
|
@ -24,8 +24,10 @@ import java.util.Iterator;
|
||||||
|
|
||||||
import org.apache.commons.math4.distribution.EnumeratedRealDistribution;
|
import org.apache.commons.math4.distribution.EnumeratedRealDistribution;
|
||||||
import org.apache.commons.math4.distribution.RealDistribution;
|
import org.apache.commons.math4.distribution.RealDistribution;
|
||||||
|
import org.apache.commons.math4.distribution.UniformRealDistribution;
|
||||||
import org.apache.commons.math4.exception.InsufficientDataException;
|
import org.apache.commons.math4.exception.InsufficientDataException;
|
||||||
import org.apache.commons.math4.exception.MathArithmeticException;
|
import org.apache.commons.math4.exception.MathArithmeticException;
|
||||||
|
import org.apache.commons.math4.exception.MathInternalError;
|
||||||
import org.apache.commons.math4.exception.NullArgumentException;
|
import org.apache.commons.math4.exception.NullArgumentException;
|
||||||
import org.apache.commons.math4.exception.NumberIsTooLargeException;
|
import org.apache.commons.math4.exception.NumberIsTooLargeException;
|
||||||
import org.apache.commons.math4.exception.OutOfRangeException;
|
import org.apache.commons.math4.exception.OutOfRangeException;
|
||||||
|
@ -38,6 +40,7 @@ import org.apache.commons.math4.linear.Array2DRowFieldMatrix;
|
||||||
import org.apache.commons.math4.linear.FieldMatrix;
|
import org.apache.commons.math4.linear.FieldMatrix;
|
||||||
import org.apache.commons.math4.linear.MatrixUtils;
|
import org.apache.commons.math4.linear.MatrixUtils;
|
||||||
import org.apache.commons.math4.linear.RealMatrix;
|
import org.apache.commons.math4.linear.RealMatrix;
|
||||||
|
import org.apache.commons.math4.random.JDKRandomGenerator;
|
||||||
import org.apache.commons.math4.random.RandomGenerator;
|
import org.apache.commons.math4.random.RandomGenerator;
|
||||||
import org.apache.commons.math4.random.Well19937c;
|
import org.apache.commons.math4.random.Well19937c;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
import org.apache.commons.math4.util.CombinatoricsUtils;
|
||||||
|
@ -244,11 +247,21 @@ public class KolmogorovSmirnovTest {
|
||||||
*/
|
*/
|
||||||
public double kolmogorovSmirnovTest(double[] x, double[] y, boolean strict) {
|
public double kolmogorovSmirnovTest(double[] x, double[] y, boolean strict) {
|
||||||
final long lengthProduct = (long) x.length * y.length;
|
final long lengthProduct = (long) x.length * y.length;
|
||||||
|
double[] xa = null;
|
||||||
|
double[] ya = null;
|
||||||
|
if (lengthProduct < LARGE_SAMPLE_PRODUCT && hasTies(x,y)) {
|
||||||
|
xa = MathArrays.copyOf(x);
|
||||||
|
ya = MathArrays.copyOf(y);
|
||||||
|
fixTies(xa, ya);
|
||||||
|
} else {
|
||||||
|
xa = x;
|
||||||
|
ya = y;
|
||||||
|
}
|
||||||
if (lengthProduct < SMALL_SAMPLE_PRODUCT) {
|
if (lengthProduct < SMALL_SAMPLE_PRODUCT) {
|
||||||
return integralExactP(integralKolmogorovSmirnovStatistic(x, y) + (strict?1l:0l), x.length, y.length);
|
return integralExactP(integralKolmogorovSmirnovStatistic(xa, ya) + (strict?1l:0l), x.length, y.length);
|
||||||
}
|
}
|
||||||
if (lengthProduct < LARGE_SAMPLE_PRODUCT) {
|
if (lengthProduct < LARGE_SAMPLE_PRODUCT) {
|
||||||
return integralMonteCarloP(integralKolmogorovSmirnovStatistic(x, y) + (strict?1l:0l), x.length, y.length, MONTE_CARLO_ITERATIONS);
|
return integralMonteCarloP(integralKolmogorovSmirnovStatistic(xa, ya) + (strict?1l:0l), x.length, y.length, MONTE_CARLO_ITERATIONS);
|
||||||
}
|
}
|
||||||
return approximateP(kolmogorovSmirnovStatistic(x, y), x.length, y.length);
|
return approximateP(kolmogorovSmirnovStatistic(x, y), x.length, y.length);
|
||||||
}
|
}
|
||||||
|
@ -1149,6 +1162,59 @@ public class KolmogorovSmirnovTest {
|
||||||
return (double) tail / iterations;
|
return (double) tail / iterations;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* If there are no ties in the combined dataset formed from x and y, this
|
||||||
|
* method is a no-op. If there are ties, a uniform random deviate in
|
||||||
|
* (-minDelta / 2, minDelta / 2) - {0} is added to each value in x and y, where
|
||||||
|
* minDelta is the minimum difference between unequal values in the combined
|
||||||
|
* sample. A fixed seed is used to generate the jitter, so repeated activations
|
||||||
|
* with the same input arrays result in the same values.
|
||||||
|
*
|
||||||
|
* NOTE: if there are ties in the data, this method overwrites the data in
|
||||||
|
* x and y with the jittered values.
|
||||||
|
*
|
||||||
|
* @param x first sample
|
||||||
|
* @param y second sample
|
||||||
|
*/
|
||||||
|
private static void fixTies(double[] x, double[] y) {
|
||||||
|
final double[] values = MathArrays.unique(MathArrays.concatenate(x,y));
|
||||||
|
if (values.length == x.length + y.length) {
|
||||||
|
return; // There are no ties
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find the smallest difference between values, or 1 if all values are the same
|
||||||
|
double minDelta = 1;
|
||||||
|
double prev = values[0];
|
||||||
|
double delta = 1;
|
||||||
|
for (int i = 1; i < values.length; i++) {
|
||||||
|
delta = prev - values[i];
|
||||||
|
if (delta < minDelta) {
|
||||||
|
minDelta = delta;
|
||||||
|
}
|
||||||
|
prev = values[i];
|
||||||
|
}
|
||||||
|
minDelta /= 2;
|
||||||
|
|
||||||
|
// Add jitter using a fixed seed (so same arguments always give same results),
|
||||||
|
// low-initialization-overhead generator
|
||||||
|
final RealDistribution dist =
|
||||||
|
new UniformRealDistribution(new JDKRandomGenerator(100), -minDelta, minDelta);
|
||||||
|
|
||||||
|
// It is theoretically possible that jitter does not break ties, so repeat
|
||||||
|
// until all ties are gone. Bound the loop and throw MIE if bound is exceeded.
|
||||||
|
int ct = 0;
|
||||||
|
boolean ties = true;
|
||||||
|
do {
|
||||||
|
jitter(x, dist);
|
||||||
|
jitter(y, dist);
|
||||||
|
ties = hasTies(x, y);
|
||||||
|
ct++;
|
||||||
|
} while (ties && ct < 1000);
|
||||||
|
if (ties) {
|
||||||
|
throw new MathInternalError(); // Should never happen
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns true iff there are ties in the combined sample
|
* Returns true iff there are ties in the combined sample
|
||||||
* formed from x and y.
|
* formed from x and y.
|
||||||
|
@ -1157,8 +1223,8 @@ public class KolmogorovSmirnovTest {
|
||||||
* @param y second sample
|
* @param y second sample
|
||||||
* @return true if x and y together contain ties
|
* @return true if x and y together contain ties
|
||||||
*/
|
*/
|
||||||
private boolean hasTies(double[] x, double[] y) {
|
private static boolean hasTies(double[] x, double[] y) {
|
||||||
HashSet<Double> values = new HashSet<Double>();
|
final HashSet<Double> values = new HashSet<Double>();
|
||||||
for (int i = 0; i < x.length; i++) {
|
for (int i = 0; i < x.length; i++) {
|
||||||
if (!values.add(x[i])) {
|
if (!values.add(x[i])) {
|
||||||
return true;
|
return true;
|
||||||
|
@ -1171,4 +1237,20 @@ public class KolmogorovSmirnovTest {
|
||||||
}
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Adds random jitter to {@code data} using deviates sampled from {@code dist}.
|
||||||
|
* <p>
|
||||||
|
* Note that jitter is applied in-place - i.e., the array
|
||||||
|
* values are overwritten with the result of applying jitter.</p>
|
||||||
|
*
|
||||||
|
* @param data input/output data array - entries overwritten by the method
|
||||||
|
* @param dist probability distribution to sample for jitter values
|
||||||
|
* @throws NullPointerException if either of the parameters is null
|
||||||
|
*/
|
||||||
|
private static void jitter(double[] data, RealDistribution dist) {
|
||||||
|
for (int i = 0; i < data.length; i++) {
|
||||||
|
data[i] = data[i] + dist.sample();
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -22,7 +22,9 @@ import java.util.ArrayList;
|
||||||
import java.util.Arrays;
|
import java.util.Arrays;
|
||||||
import java.util.Collections;
|
import java.util.Collections;
|
||||||
import java.util.Comparator;
|
import java.util.Comparator;
|
||||||
|
import java.util.Iterator;
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
|
import java.util.TreeSet;
|
||||||
|
|
||||||
import org.apache.commons.math4.Field;
|
import org.apache.commons.math4.Field;
|
||||||
import org.apache.commons.math4.distribution.UniformIntegerDistribution;
|
import org.apache.commons.math4.distribution.UniformIntegerDistribution;
|
||||||
|
@ -1876,4 +1878,60 @@ public class MathArrays {
|
||||||
|
|
||||||
return verifyValues(values, begin, length, allowEmpty);
|
return verifyValues(values, begin, length, allowEmpty);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Concatenates a sequence of arrays. The return array consists of the
|
||||||
|
* entries of the input arrays concatenated in the order they appear in
|
||||||
|
* the argument list. Null arrays cause NullPointerExceptions; zero
|
||||||
|
* length arrays are allowed (contributing nothing to the output array).
|
||||||
|
*
|
||||||
|
* @param x list of double[] arrays to concatenate
|
||||||
|
* @return a new array consisting of the entries of the argument arrays
|
||||||
|
* @throws NullPointerException if any of the arrays are null
|
||||||
|
* @since 3.6
|
||||||
|
*/
|
||||||
|
public static double[] concatenate(double[] ...x) {
|
||||||
|
int combinedLength = 0;
|
||||||
|
for (double[] a : x) {
|
||||||
|
combinedLength += a.length;
|
||||||
|
}
|
||||||
|
int offset = 0;
|
||||||
|
int curLength = 0;
|
||||||
|
final double[] combined = new double[combinedLength];
|
||||||
|
for (int i = 0; i < x.length; i++) {
|
||||||
|
curLength = x[i].length;
|
||||||
|
System.arraycopy(x[i], 0, combined, offset, curLength);
|
||||||
|
offset += curLength;
|
||||||
|
}
|
||||||
|
return combined;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns an array consisting of the unique values in {@code data}.
|
||||||
|
* The return array is sorted in descending order. Empty arrays
|
||||||
|
* are allowed, but null arrays result in NullPointerException.
|
||||||
|
* Infinities are allowed. NaN values are allowed with maximum
|
||||||
|
* sort order - i.e., if there are NaN values in {@code data},
|
||||||
|
* {@code Double.NaN} will be the first element of the output array,
|
||||||
|
* even if the array also contains {@code Double.POSITIVE_INFINITY}.
|
||||||
|
*
|
||||||
|
* @param data array to scan
|
||||||
|
* @return descending list of values included in the input array
|
||||||
|
* @throws NullPointerException if data is null
|
||||||
|
* @since 3.6
|
||||||
|
*/
|
||||||
|
public static double[] unique(double[] data) {
|
||||||
|
TreeSet<Double> values = new TreeSet<Double>();
|
||||||
|
for (int i = 0; i < data.length; i++) {
|
||||||
|
values.add(data[i]);
|
||||||
|
}
|
||||||
|
final int count = values.size();
|
||||||
|
final double[] out = new double[count];
|
||||||
|
Iterator<Double> iterator = values.descendingIterator();
|
||||||
|
int i = 0;
|
||||||
|
while (iterator.hasNext()) {
|
||||||
|
out[i++] = iterator.next();
|
||||||
|
}
|
||||||
|
return out;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -17,6 +17,7 @@
|
||||||
|
|
||||||
package org.apache.commons.math4.stat.inference;
|
package org.apache.commons.math4.stat.inference;
|
||||||
|
|
||||||
|
import java.lang.reflect.Method;
|
||||||
import java.util.Arrays;
|
import java.util.Arrays;
|
||||||
|
|
||||||
import org.apache.commons.math4.TestUtils;
|
import org.apache.commons.math4.TestUtils;
|
||||||
|
@ -27,6 +28,7 @@ import org.apache.commons.math4.random.Well19937c;
|
||||||
import org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest;
|
import org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest;
|
||||||
import org.apache.commons.math4.util.CombinatoricsUtils;
|
import org.apache.commons.math4.util.CombinatoricsUtils;
|
||||||
import org.apache.commons.math4.util.FastMath;
|
import org.apache.commons.math4.util.FastMath;
|
||||||
|
import org.apache.commons.math4.util.MathArrays;
|
||||||
import org.junit.Assert;
|
import org.junit.Assert;
|
||||||
import org.junit.Test;
|
import org.junit.Test;
|
||||||
|
|
||||||
|
@ -567,6 +569,63 @@ public class KolmogorovSmirnovTestTest {
|
||||||
Assert.assertEquals(0.06303, test.bootstrap(x, y, 10000, false), 1E-2);
|
Assert.assertEquals(0.06303, test.bootstrap(x, y, 10000, false), 1E-2);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testFixTiesNoOp() throws Exception {
|
||||||
|
final double[] x = {0, 1, 2, 3, 4};
|
||||||
|
final double[] y = {5, 6, 7, 8};
|
||||||
|
final double[] origX = MathArrays.copyOf(x);
|
||||||
|
final double[] origY = MathArrays.copyOf(y);
|
||||||
|
fixTies(x,y);
|
||||||
|
Assert.assertArrayEquals(origX, x, 0);
|
||||||
|
Assert.assertArrayEquals(origY, y, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Verify that fixTies is deterministic, i.e,
|
||||||
|
* x = x', y = y' => fixTies(x,y) = fixTies(x', y')
|
||||||
|
*/
|
||||||
|
@Test
|
||||||
|
public void testFixTiesConsistency() throws Exception {
|
||||||
|
final double[] x = {0, 1, 2, 3, 4, 2};
|
||||||
|
final double[] y = {5, 6, 7, 8, 1, 2};
|
||||||
|
final double[] xP = MathArrays.copyOf(x);
|
||||||
|
final double[] yP = MathArrays.copyOf(y);
|
||||||
|
checkFixTies(x, y);
|
||||||
|
final double[] fixedX = MathArrays.copyOf(x);
|
||||||
|
final double[] fixedY = MathArrays.copyOf(y);
|
||||||
|
checkFixTies(xP, yP);
|
||||||
|
Assert.assertArrayEquals(fixedX, xP, 0);
|
||||||
|
Assert.assertArrayEquals(fixedY, yP, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testFixTies() throws Exception {
|
||||||
|
checkFixTies(new double[] {0, 1, 1, 4, 0}, new double[] {0, 5, 0.5, 0.55, 7});
|
||||||
|
checkFixTies(new double[] {1, 1, 1, 1, 1}, new double[] {1, 1});
|
||||||
|
checkFixTies(new double[] {1, 2, 3}, new double[] {1});
|
||||||
|
checkFixTies(new double[] {1, 1, 0, 1, 0}, new double[] {});
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Checks that fixTies eliminates ties in the data but does not otherwise
|
||||||
|
* perturb the ordering.
|
||||||
|
*/
|
||||||
|
private void checkFixTies(double[] x, double[] y) throws Exception {
|
||||||
|
final double[] origCombined = MathArrays.concatenate(x, y);
|
||||||
|
fixTies(x, y);
|
||||||
|
Assert.assertFalse(hasTies(x, y));
|
||||||
|
final double[] combined = MathArrays.concatenate(x, y);
|
||||||
|
for (int i = 0; i < combined.length; i++) {
|
||||||
|
for (int j = 0; j < i; j++) {
|
||||||
|
Assert.assertTrue(combined[i] != combined[j]);
|
||||||
|
if (combined[i] < combined[j])
|
||||||
|
Assert.assertTrue(origCombined[i] < origCombined[j]
|
||||||
|
|| origCombined[i] == origCombined[j]);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Verifies the inequality exactP(criticalValue, n, m, true) < alpha < exactP(criticalValue, n,
|
* Verifies the inequality exactP(criticalValue, n, m, true) < alpha < exactP(criticalValue, n,
|
||||||
* m, false).
|
* m, false).
|
||||||
|
@ -601,4 +660,24 @@ public class KolmogorovSmirnovTestTest {
|
||||||
Assert.assertEquals(alpha, test.approximateP(criticalValue, n, m), epsilon);
|
Assert.assertEquals(alpha, test.approximateP(criticalValue, n, m), epsilon);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Reflection hack to expose private fixTies method for testing.
|
||||||
|
*/
|
||||||
|
private static void fixTies(double[] x, double[] y) throws Exception {
|
||||||
|
Method method = KolmogorovSmirnovTest.class.getDeclaredMethod("fixTies",
|
||||||
|
double[].class, double[].class);
|
||||||
|
method.setAccessible(true);
|
||||||
|
method.invoke(KolmogorovSmirnovTest.class, x, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Reflection hack to expose private hasTies method.
|
||||||
|
*/
|
||||||
|
private static boolean hasTies(double[] x, double[] y) throws Exception {
|
||||||
|
Method method = KolmogorovSmirnovTest.class.getDeclaredMethod("hasTies",
|
||||||
|
double[].class, double[].class);
|
||||||
|
method.setAccessible(true);
|
||||||
|
return (boolean) method.invoke(KolmogorovSmirnovTest.class, x, y);
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -1252,4 +1252,69 @@ public class MathArraysTest {
|
||||||
// expected
|
// expected
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testConcatenate() {
|
||||||
|
final double[] u = new double[] {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||||
|
final double[] x = new double[] {0, 1, 2};
|
||||||
|
final double[] y = new double[] {3, 4, 5, 6, 7, 8};
|
||||||
|
final double[] z = new double[] {9};
|
||||||
|
Assert.assertArrayEquals(u, MathArrays.concatenate(x, y, z), 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testConcatentateSingle() {
|
||||||
|
final double[] x = new double[] {0, 1, 2};
|
||||||
|
Assert.assertArrayEquals(x, MathArrays.concatenate(x), 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
public void testConcatenateEmptyArguments() {
|
||||||
|
final double[] x = new double[] {0, 1, 2};
|
||||||
|
final double[] y = new double[] {3};
|
||||||
|
final double[] z = new double[] {};
|
||||||
|
final double[] u = new double[] {0, 1, 2, 3};
|
||||||
|
Assert.assertArrayEquals(u, MathArrays.concatenate(x, z, y), 0);
|
||||||
|
Assert.assertArrayEquals(u, MathArrays.concatenate(x, y, z), 0);
|
||||||
|
Assert.assertArrayEquals(u, MathArrays.concatenate(z, x, y), 0);
|
||||||
|
Assert.assertEquals(0, MathArrays.concatenate(z, z, z).length);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test(expected=NullPointerException.class)
|
||||||
|
public void testConcatenateNullArguments() {
|
||||||
|
final double[] x = new double[] {0, 1, 2};
|
||||||
|
MathArrays.concatenate(x, null);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testUnique() {
|
||||||
|
final double[] x = {0, 9, 3, 0, 11, 7, 3, 5, -1, -2};
|
||||||
|
final double[] values = {11, 9, 7, 5, 3, 0, -1, -2};
|
||||||
|
Assert.assertArrayEquals(values, MathArrays.unique(x), 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testUniqueInfiniteValues() {
|
||||||
|
final double [] x = {0, Double.NEGATIVE_INFINITY, 3, Double.NEGATIVE_INFINITY,
|
||||||
|
3, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY};
|
||||||
|
final double[] u = {Double.POSITIVE_INFINITY, 3, 0, Double.NEGATIVE_INFINITY};
|
||||||
|
Assert.assertArrayEquals(u , MathArrays.unique(x), 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testUniqueNaNValues() {
|
||||||
|
final double[] x = new double[] {10, 2, Double.NaN, Double.NaN, Double.NaN,
|
||||||
|
Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY};
|
||||||
|
final double[] u = MathArrays.unique(x);
|
||||||
|
Assert.assertEquals(5, u.length);
|
||||||
|
Assert.assertTrue(Double.isNaN(u[0]));
|
||||||
|
Assert.assertEquals(Double.POSITIVE_INFINITY, u[1], 0);
|
||||||
|
Assert.assertEquals(10, u[2], 0);
|
||||||
|
Assert.assertEquals(2, u[3], 0);
|
||||||
|
Assert.assertEquals(Double.NEGATIVE_INFINITY, u[4], 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test(expected=NullPointerException.class)
|
||||||
|
public void testUniqueNullArgument() {
|
||||||
|
MathArrays.unique(null);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue