Formatting.
This commit is contained in:
parent
301ad59214
commit
f8a8ea748a
|
@ -16,9 +16,6 @@
|
|||
*/
|
||||
package org.apache.commons.math3.analysis.interpolation;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertTrue;
|
||||
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.InsufficientDataException;
|
||||
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
|
||||
|
@ -46,84 +43,84 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest {
|
|||
double[][] zval = new double[xval.length][yval.length];
|
||||
|
||||
@SuppressWarnings("unused")
|
||||
PiecewiseBicubicSplineInterpolatingFunction bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval, zval );
|
||||
PiecewiseBicubicSplineInterpolatingFunction bcf = new PiecewiseBicubicSplineInterpolatingFunction(xval, yval, zval);
|
||||
|
||||
try {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction( null, yval, zval );
|
||||
Assert.fail( "Failed to detect x null pointer" );
|
||||
} catch ( NullArgumentException iae ) {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction(null, yval, zval);
|
||||
Assert.fail("Failed to detect x null pointer");
|
||||
} catch (NullArgumentException iae) {
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, null, zval );
|
||||
Assert.fail( "Failed to detect y null pointer" );
|
||||
} catch ( NullArgumentException iae ) {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction(xval, null, zval);
|
||||
Assert.fail("Failed to detect y null pointer");
|
||||
} catch (NullArgumentException iae) {
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval, null );
|
||||
Assert.fail( "Failed to detect z null pointer" );
|
||||
} catch ( NullArgumentException iae ) {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction(xval, yval, null);
|
||||
Assert.fail("Failed to detect z null pointer");
|
||||
} catch (NullArgumentException iae) {
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try {
|
||||
double xval1[] = { 0.0, 1.0, 2.0, 3.0 };
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval1, yval, zval );
|
||||
Assert.fail( "Failed to detect insufficient x data" );
|
||||
} catch ( InsufficientDataException iae ) {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction(xval1, yval, zval);
|
||||
Assert.fail("Failed to detect insufficient x data");
|
||||
} catch (InsufficientDataException iae) {
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try {
|
||||
double yval1[] = { 0.0, 1.0, 2.0, 3.0 };
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval1, zval );
|
||||
Assert.fail( "Failed to detect insufficient y data" );
|
||||
} catch ( InsufficientDataException iae ) {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction(xval, yval1, zval);
|
||||
Assert.fail("Failed to detect insufficient y data");
|
||||
} catch (InsufficientDataException iae) {
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try {
|
||||
double zval1[][] = new double[4][4];
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval, zval1 );
|
||||
Assert.fail( "Failed to detect insufficient z data" );
|
||||
} catch ( InsufficientDataException iae ) {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction(xval, yval, zval1);
|
||||
Assert.fail("Failed to detect insufficient z data");
|
||||
} catch (InsufficientDataException iae) {
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try {
|
||||
double xval1[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval1, yval, zval );
|
||||
Assert.fail( "Failed to detect data set array with different sizes." );
|
||||
} catch ( DimensionMismatchException iae ) {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction(xval1, yval, zval);
|
||||
Assert.fail("Failed to detect data set array with different sizes.");
|
||||
} catch (DimensionMismatchException iae) {
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try {
|
||||
double yval1[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval1, zval );
|
||||
Assert.fail( "Failed to detect data set array with different sizes." );
|
||||
} catch ( DimensionMismatchException iae ) {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction(xval, yval1, zval);
|
||||
Assert.fail("Failed to detect data set array with different sizes.");
|
||||
} catch (DimensionMismatchException iae) {
|
||||
// Expected.
|
||||
}
|
||||
|
||||
// X values not sorted.
|
||||
try {
|
||||
double xval1[] = { 0.0, 1.0, 0.5, 7.0, 3.5 };
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval1, yval, zval );
|
||||
Assert.fail( "Failed to detect unsorted x arguments." );
|
||||
} catch ( NonMonotonicSequenceException iae ) {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction(xval1, yval, zval);
|
||||
Assert.fail("Failed to detect unsorted x arguments.");
|
||||
} catch (NonMonotonicSequenceException iae) {
|
||||
// Expected.
|
||||
}
|
||||
|
||||
// Y values not sorted.
|
||||
try {
|
||||
double yval1[] = { 0.0, 1.0, 1.5, 0.0, 3.0 };
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction( xval, yval1, zval );
|
||||
Assert.fail( "Failed to detect unsorted y arguments." );
|
||||
} catch ( NonMonotonicSequenceException iae ) {
|
||||
bcf = new PiecewiseBicubicSplineInterpolatingFunction(xval, yval1, zval);
|
||||
Assert.fail("Failed to detect unsorted y arguments.");
|
||||
} catch (NonMonotonicSequenceException iae) {
|
||||
// Expected.
|
||||
}
|
||||
}
|
||||
|
@ -134,25 +131,33 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest {
|
|||
* z = 2 x - 3 y + 5
|
||||
*/
|
||||
@Test
|
||||
public void testInterpolatePlane() {
|
||||
public void testPlane() {
|
||||
final int numberOfElements = 10;
|
||||
final double minimumX = -10;
|
||||
final double maximumX = 10;
|
||||
final double minimumY = -10;
|
||||
final double maximumY = 10;
|
||||
final int numberOfSamples = 100;
|
||||
|
||||
final double interpolationTolerance = 7e-15;
|
||||
final double maxTolerance = 6e-14;
|
||||
|
||||
// Function values
|
||||
BivariateFunction f = new BivariateFunction() {
|
||||
public double value( double x, double y ) {
|
||||
public double value(double x, double y) {
|
||||
return 2 * x - 3 * y + 5;
|
||||
}
|
||||
};
|
||||
|
||||
testInterpolation( minimumX, maximumX, minimumY, maximumY, numberOfElements, numberOfSamples, f,
|
||||
interpolationTolerance, maxTolerance );
|
||||
testInterpolation(minimumX,
|
||||
maximumX,
|
||||
minimumY,
|
||||
maximumY,
|
||||
numberOfElements,
|
||||
numberOfSamples,
|
||||
f,
|
||||
interpolationTolerance,
|
||||
maxTolerance);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -161,74 +166,103 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest {
|
|||
* z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
|
||||
*/
|
||||
@Test
|
||||
public void testInterpolationParabaloid() {
|
||||
public void testParabaloid() {
|
||||
final int numberOfElements = 10;
|
||||
final double minimumX = -10;
|
||||
final double maximumX = 10;
|
||||
final double minimumY = -10;
|
||||
final double maximumY = 10;
|
||||
final int numberOfSamples = 100;
|
||||
|
||||
final double interpolationTolerance = 2e-14;
|
||||
final double maxTolerance = 6e-14;
|
||||
|
||||
// Function values
|
||||
BivariateFunction f = new BivariateFunction() {
|
||||
public double value( double x, double y ) {
|
||||
public double value(double x, double y) {
|
||||
return 2 * x * x - 3 * y * y + 4 * x * y - 5;
|
||||
}
|
||||
};
|
||||
|
||||
testInterpolation( minimumX, maximumX, minimumY, maximumY, numberOfElements, numberOfSamples, f,
|
||||
interpolationTolerance, maxTolerance );
|
||||
testInterpolation(minimumX,
|
||||
maximumX,
|
||||
minimumY,
|
||||
maximumY,
|
||||
numberOfElements,
|
||||
numberOfSamples,
|
||||
f,
|
||||
interpolationTolerance,
|
||||
maxTolerance);
|
||||
}
|
||||
|
||||
private void testInterpolation( double minimumX, double maximumX, double minimumY, double maximumY,
|
||||
int numberOfElements, int numberOfSamples, BivariateFunction f, double tolerance,
|
||||
double maxTolerance ) {
|
||||
/**
|
||||
* @param minimumX Lower bound of interpolation range along the x-coordinate.
|
||||
* @param maximumX Higher bound of interpolation range along the x-coordinate.
|
||||
* @param minimumY Lower bound of interpolation range along the y-coordinate.
|
||||
* @param maximumY Higher bound of interpolation range along the y-coordinate.
|
||||
* @param numberOfElements Number of data points (along each dimension).
|
||||
* @param numberOfSamples Number of test points.
|
||||
* @param f Function to test.
|
||||
* @param meanTolerance Allowed average error (mean error on all interpolated values).
|
||||
* @param maxTolerance Allowed error on each interpolated value.
|
||||
*/
|
||||
private void testInterpolation(double minimumX,
|
||||
double maximumX,
|
||||
double minimumY,
|
||||
double maximumY,
|
||||
int numberOfElements,
|
||||
int numberOfSamples,
|
||||
BivariateFunction f,
|
||||
double meanTolerance,
|
||||
double maxTolerance) {
|
||||
double expected;
|
||||
double actual;
|
||||
double currentX;
|
||||
double currentY;
|
||||
final double deltaX = ( maximumX - minimumX ) / ( (double) numberOfElements );
|
||||
final double deltaY = ( maximumY - minimumY ) / ( (double) numberOfElements );
|
||||
double xValues[] = new double[numberOfElements];
|
||||
double yValues[] = new double[numberOfElements];
|
||||
double zValues[][] = new double[numberOfElements][numberOfElements];
|
||||
final double deltaX = (maximumX - minimumX) / ((double) numberOfElements);
|
||||
final double deltaY = (maximumY - minimumY) / ((double) numberOfElements);
|
||||
final double[] xValues = new double[numberOfElements];
|
||||
final double[] yValues = new double[numberOfElements];
|
||||
final double[][] zValues = new double[numberOfElements][numberOfElements];
|
||||
|
||||
for ( int i = 0; i < numberOfElements; i++ ) {
|
||||
for (int i = 0; i < numberOfElements; i++) {
|
||||
xValues[i] = minimumX + deltaX * (double) i;
|
||||
for ( int j = 0; j < numberOfElements; j++ ) {
|
||||
for (int j = 0; j < numberOfElements; j++) {
|
||||
yValues[j] = minimumY + deltaY * (double) j;
|
||||
zValues[i][j] = f.value( xValues[i], yValues[j] );
|
||||
zValues[i][j] = f.value(xValues[i], yValues[j]);
|
||||
}
|
||||
}
|
||||
|
||||
BivariateFunction interpolation = new PiecewiseBicubicSplineInterpolatingFunction( xValues, yValues, zValues );
|
||||
final BivariateFunction interpolation
|
||||
= new PiecewiseBicubicSplineInterpolatingFunction(xValues,
|
||||
yValues,
|
||||
zValues);
|
||||
|
||||
for ( int i = 0; i < numberOfElements; i++ ) {
|
||||
for (int i = 0; i < numberOfElements; i++) {
|
||||
currentX = xValues[i];
|
||||
for ( int j = 0; j < numberOfElements; j++ ) {
|
||||
for (int j = 0; j < numberOfElements; j++) {
|
||||
currentY = yValues[j];
|
||||
expected = f.value( currentX, currentY );
|
||||
actual = interpolation.value( currentX, currentY );
|
||||
assertTrue( Precision.equals( expected, actual ) );
|
||||
expected = f.value(currentX, currentY);
|
||||
actual = interpolation.value(currentX, currentY);
|
||||
Assert.assertTrue(Precision.equals(expected, actual));
|
||||
}
|
||||
}
|
||||
|
||||
final RandomGenerator rng = new Well19937c( 1234567L ); // "tol" depends on the seed.
|
||||
final UniformRealDistribution distX = new UniformRealDistribution( rng, xValues[0], xValues[xValues.length - 1] );
|
||||
final UniformRealDistribution distY = new UniformRealDistribution( rng, yValues[0], yValues[yValues.length - 1] );
|
||||
final RandomGenerator rng = new Well19937c(1234567L);
|
||||
final UniformRealDistribution distX = new UniformRealDistribution(rng, xValues[0], xValues[xValues.length - 1]);
|
||||
final UniformRealDistribution distY = new UniformRealDistribution(rng, yValues[0], yValues[yValues.length - 1]);
|
||||
|
||||
double sumError = 0;
|
||||
for ( int i = 0; i < numberOfSamples; i++ ) {
|
||||
for (int i = 0; i < numberOfSamples; i++) {
|
||||
currentX = distX.sample();
|
||||
currentY = distY.sample();
|
||||
expected = f.value( currentX, currentY );
|
||||
actual = interpolation.value( currentX, currentY );
|
||||
sumError += FastMath.abs( actual - expected );
|
||||
assertEquals( expected, actual, maxTolerance );
|
||||
expected = f.value(currentX, currentY);
|
||||
actual = interpolation.value(currentX, currentY);
|
||||
sumError += FastMath.abs(actual - expected);
|
||||
Assert.assertEquals(expected, actual, maxTolerance);
|
||||
}
|
||||
|
||||
assertEquals( 0.0, ( sumError / (double) numberOfSamples ), tolerance );
|
||||
final double meanError = sumError / numberOfSamples;
|
||||
Assert.assertEquals(0, meanError, meanTolerance);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue