Addition of optimal array based evaluations available in StatUtils. These are not delegates to StatUtils, they are implementations.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@140969 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
b6871d607e
commit
faa703e40e
|
@ -65,57 +65,18 @@ public abstract class AbstractStorelessUnivariateStatistic
|
||||||
extends AbstractUnivariateStatistic
|
extends AbstractUnivariateStatistic
|
||||||
implements StorelessUnivariateStatistic {
|
implements StorelessUnivariateStatistic {
|
||||||
|
|
||||||
protected boolean clearOnEval = true;
|
|
||||||
|
|
||||||
protected boolean init = true;
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This implements the AbstractUnivariateStatistic impl to funnel
|
* This implements the AbstractUnivariateStatistic impl to funnel
|
||||||
* calculation off to the instantanious increment method.
|
* calculation off to the instantanious increment method.
|
||||||
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
*/
|
*/
|
||||||
public double evaluate(double[] d, int start, int length) {
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
|
if (this.test(values, begin, length)) {
|
||||||
if (clearOnEval)
|
|
||||||
this.clear();
|
this.clear();
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
for (int i = start; i < start + length; i++) {
|
increment(values[i]);
|
||||||
increment(d[i]);
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return getValue();
|
return getValue();
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
* Implement this delegated internalClear()
|
|
||||||
* to cleanup the state of your implementation on clear().
|
|
||||||
*/
|
|
||||||
protected abstract void internalClear();
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This implementation is finalized so the implementor does not have to manage
|
|
||||||
* clearing its state. They just need to implement their delegated internalClear()
|
|
||||||
* to cleanup the state of their implementation on clear().
|
|
||||||
*
|
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
|
||||||
*/
|
|
||||||
public final void clear(){
|
|
||||||
init = true;
|
|
||||||
internalClear();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#isClearOnEval()
|
|
||||||
*/
|
|
||||||
public boolean isClearOnEval() {
|
|
||||||
return clearOnEval;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#setClearOnEval(boolean)
|
|
||||||
*/
|
|
||||||
public void setClearOnEval(boolean b) {
|
|
||||||
clearOnEval = b;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
}
|
|
@ -69,15 +69,15 @@ public abstract class AbstractUnivariateStatistic
|
||||||
*
|
*
|
||||||
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[])
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[])
|
||||||
*/
|
*/
|
||||||
public double evaluate(double[] d) {
|
public double evaluate(double[] values) {
|
||||||
return evaluate(d, 0, d.length);
|
return evaluate(values, 0, values.length);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Subclasses of AbstractUnivariateStatistc need to implementation this method.
|
* Subclasses of AbstractUnivariateStatistc need to implement this method.
|
||||||
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
*/
|
*/
|
||||||
public abstract double evaluate(double[] d, int start, int length);
|
public abstract double evaluate(double[] values, int begin, int length);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* this protected test method used by all methods to verify the content
|
* this protected test method used by all methods to verify the content
|
||||||
|
@ -86,7 +86,7 @@ public abstract class AbstractUnivariateStatistic
|
||||||
* @param begin processing at this point in the array
|
* @param begin processing at this point in the array
|
||||||
* @param length processing at this point in the array
|
* @param length processing at this point in the array
|
||||||
*/
|
*/
|
||||||
protected void test(double[] values, int begin, int length) {
|
protected boolean test(double[] values, int begin, int length) {
|
||||||
|
|
||||||
if (length > values.length)
|
if (length > values.length)
|
||||||
throw new IllegalArgumentException("length > values.length");
|
throw new IllegalArgumentException("length > values.length");
|
||||||
|
@ -97,5 +97,10 @@ public abstract class AbstractUnivariateStatistic
|
||||||
if (values == null)
|
if (values == null)
|
||||||
throw new IllegalArgumentException("input value array is null");
|
throw new IllegalArgumentException("input value array is null");
|
||||||
|
|
||||||
|
if (values.length == 0 || length == 0)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
return true;
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
|
@ -79,6 +79,7 @@ public interface StorelessUnivariateStatistic extends UnivariateStatistic {
|
||||||
*/
|
*/
|
||||||
public double getValue();
|
public double getValue();
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Clears all the internal state of the Statistic
|
* Clears all the internal state of the Statistic
|
||||||
*/
|
*/
|
||||||
|
@ -90,7 +91,7 @@ public interface StorelessUnivariateStatistic extends UnivariateStatistic {
|
||||||
* <code>evaluate(double[])</code> methods.
|
* <code>evaluate(double[])</code> methods.
|
||||||
* @return the state
|
* @return the state
|
||||||
*/
|
*/
|
||||||
public boolean isClearOnEval();
|
//public boolean isClearOnEval();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Sets the behavior of this statistic when evaluating
|
* Sets the behavior of this statistic when evaluating
|
||||||
|
@ -100,6 +101,6 @@ public interface StorelessUnivariateStatistic extends UnivariateStatistic {
|
||||||
* incrimented.
|
* incrimented.
|
||||||
* @param b true | false
|
* @param b true | false
|
||||||
*/
|
*/
|
||||||
public void setClearOnEval(boolean b);
|
//public void setClearOnEval(boolean b);
|
||||||
|
|
||||||
}
|
}
|
|
@ -78,6 +78,6 @@ public interface UnivariateStatistic {
|
||||||
* @return the result of the evaluation or Double.NaN
|
* @return the result of the evaluation or Double.NaN
|
||||||
* if the array is empty
|
* if the array is empty
|
||||||
*/
|
*/
|
||||||
public double evaluate(double[] d, int begin, int length);
|
public double evaluate(double[] values, int begin, int length);
|
||||||
|
|
||||||
}
|
}
|
|
@ -53,31 +53,11 @@
|
||||||
*/
|
*/
|
||||||
package org.apache.commons.math.stat.univariate.moment;
|
package org.apache.commons.math.stat.univariate.moment;
|
||||||
|
|
||||||
import org
|
|
||||||
.apache
|
|
||||||
.commons
|
|
||||||
.math
|
|
||||||
.stat
|
|
||||||
.univariate
|
|
||||||
.AbstractStorelessUnivariateStatistic;
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @author Mark Diggory
|
* @author Mark Diggory
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
public class FourthMoment extends AbstractStorelessUnivariateStatistic {
|
public class FourthMoment extends ThirdMoment {
|
||||||
|
|
||||||
/** count of values that have been added */
|
|
||||||
protected int n = 0;
|
|
||||||
|
|
||||||
/** first moment of values that have been added */
|
|
||||||
protected double m1 = Double.NaN;
|
|
||||||
|
|
||||||
/** second moment of values that have been added */
|
|
||||||
protected double m2 = Double.NaN;
|
|
||||||
|
|
||||||
/** third moment of values that have been added */
|
|
||||||
protected double m3 = Double.NaN;
|
|
||||||
|
|
||||||
/** fourth moment of values that have been added */
|
/** fourth moment of values that have been added */
|
||||||
protected double m4 = Double.NaN;
|
protected double m4 = Double.NaN;
|
||||||
|
@ -122,11 +102,11 @@ public class FourthMoment extends AbstractStorelessUnivariateStatistic {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public void clear() {
|
||||||
n = 0;
|
super.clear();
|
||||||
m1 = m2 = m3 = m4 = Double.NaN;
|
m4 = Double.NaN;
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -53,40 +53,54 @@
|
||||||
*/
|
*/
|
||||||
package org.apache.commons.math.stat.univariate.moment;
|
package org.apache.commons.math.stat.univariate.moment;
|
||||||
|
|
||||||
|
import org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic;
|
||||||
import org.apache.commons.math.stat.univariate.summary.SumOfLogs;
|
import org.apache.commons.math.stat.univariate.summary.SumOfLogs;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @author Mark Diggory
|
* @author Mark Diggory
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
public class GeometricMean extends SumOfLogs {
|
public class GeometricMean extends AbstractStorelessUnivariateStatistic {
|
||||||
|
|
||||||
protected double geomean = Double.NaN;
|
private SumOfLogs sumLog = new SumOfLogs();
|
||||||
|
|
||||||
protected int n = 0;
|
private double value = Double.NaN;
|
||||||
|
|
||||||
|
private int n = 0;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
*/
|
*/
|
||||||
public double increment(double d) {
|
public double increment(double d) {
|
||||||
n++;
|
n++;
|
||||||
super.increment(d);
|
sumLog.increment(d);
|
||||||
geomean = Math.exp( sumLog / (double)n );
|
value = Math.exp( sumLog.increment(d) / (double)n );
|
||||||
return geomean;
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
||||||
*/
|
*/
|
||||||
public double getValue() {
|
public double getValue() {
|
||||||
return geomean;
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public void clear() {
|
||||||
geomean = Double.NaN;
|
value = Double.NaN;
|
||||||
|
sumLog.clear();
|
||||||
n = 0;
|
n = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
|
*/
|
||||||
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
|
return Math.exp(sumLog.evaluate(values, begin, length) / (double) length );
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
|
@ -58,7 +58,7 @@ package org.apache.commons.math.stat.univariate.moment;
|
||||||
*/
|
*/
|
||||||
public class Kurtosis extends FourthMoment {
|
public class Kurtosis extends FourthMoment {
|
||||||
|
|
||||||
protected double kurtosis = Double.NaN;
|
private double kurtosis = Double.NaN;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
|
@ -83,13 +83,63 @@ public class Kurtosis extends FourthMoment {
|
||||||
public double getValue() {
|
public double getValue() {
|
||||||
return kurtosis;
|
return kurtosis;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public void clear() {
|
||||||
super.internalClear();
|
super.clear();
|
||||||
kurtosis = Double.NaN;
|
kurtosis = Double.NaN;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the kurtosis for this collection of values. Kurtosis is a
|
||||||
|
* measure of the "peakedness" of a distribution.
|
||||||
|
* @param values Is a double[] containing the values
|
||||||
|
* @param begin processing at this point in the array
|
||||||
|
* @param length processing at this point in the array
|
||||||
|
* @return the kurtosis of the values or Double.NaN if the array is empty
|
||||||
|
*/
|
||||||
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
|
test(values, begin, length);
|
||||||
|
|
||||||
|
// Initialize the kurtosis
|
||||||
|
double kurt = Double.NaN;
|
||||||
|
|
||||||
|
// Get the mean and the standard deviation
|
||||||
|
double mean = super.evaluate(values, begin, length);
|
||||||
|
|
||||||
|
// Calc the std, this is implemented here instead of using the
|
||||||
|
// standardDeviation method eliminate a duplicate pass to get the mean
|
||||||
|
double accum = 0.0;
|
||||||
|
double accum2 = 0.0;
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
|
accum += Math.pow((values[i] - mean), 2.0);
|
||||||
|
accum2 += (values[i] - mean);
|
||||||
|
}
|
||||||
|
|
||||||
|
double stdDev =
|
||||||
|
Math.sqrt(
|
||||||
|
(accum - (Math.pow(accum2, 2) / ((double) length)))
|
||||||
|
/ (double) (length - 1));
|
||||||
|
|
||||||
|
// Sum the ^4 of the distance from the mean divided by the
|
||||||
|
// standard deviation
|
||||||
|
double accum3 = 0.0;
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
|
accum3 += Math.pow((values[i] - mean) / stdDev, 4.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Get N
|
||||||
|
double n = length;
|
||||||
|
|
||||||
|
double coefficientOne = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3));
|
||||||
|
double termTwo = ((3 * Math.pow(n - 1, 2.0)) / ((n - 2) * (n - 3)));
|
||||||
|
|
||||||
|
// Calculate kurtosis
|
||||||
|
kurt = (coefficientOne * accum3) - termTwo;
|
||||||
|
|
||||||
|
return kurt;
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -54,32 +54,43 @@
|
||||||
package org.apache.commons.math.stat.univariate.moment;
|
package org.apache.commons.math.stat.univariate.moment;
|
||||||
|
|
||||||
import org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic;
|
import org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic;
|
||||||
|
import org.apache.commons.math.stat.univariate.summary.Sum;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @author Mark Diggory
|
* @author Mark Diggory
|
||||||
*/
|
*/
|
||||||
public class Mean extends AbstractStorelessUnivariateStatistic {
|
public class Mean extends AbstractStorelessUnivariateStatistic {
|
||||||
|
|
||||||
|
|
||||||
/** count of values that have been added */
|
/** count of values that have been added */
|
||||||
private int n = 0;
|
protected int n = 0;
|
||||||
|
|
||||||
/** first moment of values that have been added */
|
/** first moment of values that have been added */
|
||||||
private double m1 = Double.NaN;
|
protected double m1 = Double.NaN;
|
||||||
|
|
||||||
|
private Sum sum = new Sum();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
*/
|
*/
|
||||||
public double increment(double d) {
|
public double increment(double d) {
|
||||||
if (n < 1) {
|
if (n < 1) {
|
||||||
m1 = 0.0;
|
m1 = 0.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
n++;
|
n++;
|
||||||
|
|
||||||
m1 += (d - m1) / ((double) n);
|
m1 += (d - m1) / ((double) n);
|
||||||
|
|
||||||
return m1;
|
return m1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
|
*/
|
||||||
|
public void clear() {
|
||||||
|
m1 = Double.NaN;
|
||||||
|
n = 0;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
||||||
*/
|
*/
|
||||||
|
@ -88,11 +99,12 @@ public class Mean extends AbstractStorelessUnivariateStatistic {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
m1 = Double.NaN;
|
if(test(values,begin,length))
|
||||||
n = 0;
|
return sum.evaluate(values, begin, length) / ((double) length);
|
||||||
|
return Double.NaN;
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
|
@ -53,19 +53,19 @@
|
||||||
*/
|
*/
|
||||||
package org.apache.commons.math.stat.univariate.moment;
|
package org.apache.commons.math.stat.univariate.moment;
|
||||||
|
|
||||||
import org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic;
|
import org
|
||||||
|
.apache
|
||||||
|
.commons
|
||||||
|
.math
|
||||||
|
.stat
|
||||||
|
.univariate
|
||||||
|
.AbstractStorelessUnivariateStatistic;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @author Mark Diggory
|
* @author Mark Diggory
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
public class SecondMoment extends AbstractStorelessUnivariateStatistic {
|
public class SecondMoment extends Mean {
|
||||||
|
|
||||||
/** count of values that have been added */
|
|
||||||
protected int n = 0;
|
|
||||||
|
|
||||||
/** first moment of values that have been added */
|
|
||||||
protected double m1 = Double.NaN;
|
|
||||||
|
|
||||||
/** second moment of values that have been added */
|
/** second moment of values that have been added */
|
||||||
protected double m2 = Double.NaN;
|
protected double m2 = Double.NaN;
|
||||||
|
@ -75,19 +75,28 @@ public class SecondMoment extends AbstractStorelessUnivariateStatistic {
|
||||||
*/
|
*/
|
||||||
public double increment(double d) {
|
public double increment(double d) {
|
||||||
if (n < 1) {
|
if (n < 1) {
|
||||||
m2 = m1 = 0.0;
|
m1 = m2 = 0.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
n++;
|
n++;
|
||||||
|
|
||||||
double dev = d - m1;
|
double dev = d - m1;
|
||||||
double v = dev / ((double) n);
|
double v = dev / ((double) n);
|
||||||
m1 += v;
|
|
||||||
m2 += (n - 1) * dev * v;
|
|
||||||
|
|
||||||
|
m2 += ((double)(n - 1)) * dev * v;
|
||||||
|
m1 += v;
|
||||||
|
|
||||||
return m2;
|
return m2;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
|
*/
|
||||||
|
public void clear() {
|
||||||
|
super.clear();
|
||||||
|
m2 = Double.NaN;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
||||||
*/
|
*/
|
||||||
|
@ -95,11 +104,4 @@ public class SecondMoment extends AbstractStorelessUnivariateStatistic {
|
||||||
return m2;
|
return m2;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
|
||||||
*/
|
|
||||||
protected void internalClear() {
|
|
||||||
m2 = Double.NaN;
|
|
||||||
n = 0;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -59,7 +59,7 @@ package org.apache.commons.math.stat.univariate.moment;
|
||||||
*/
|
*/
|
||||||
public class Skewness extends ThirdMoment {
|
public class Skewness extends ThirdMoment {
|
||||||
|
|
||||||
protected double skewness = Double.NaN;
|
private double skewness = Double.NaN;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
|
@ -87,11 +87,58 @@ public class Skewness extends ThirdMoment {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public void clear() {
|
||||||
super.internalClear();
|
super.clear();
|
||||||
skewness = Double.NaN;
|
skewness = Double.NaN;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the skewness of a collection of values. Skewness is a
|
||||||
|
* measure of the assymetry of a given distribution.
|
||||||
|
* @param values Is a double[] containing the values
|
||||||
|
* @param begin processing at this point in the array
|
||||||
|
* @param length processing at this point in the array
|
||||||
|
* @return the skewness of the values or Double.NaN if the array is empty
|
||||||
|
*/
|
||||||
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
|
|
||||||
|
test(values, begin, length);
|
||||||
|
|
||||||
|
// Initialize the skewness
|
||||||
|
double skew = Double.NaN;
|
||||||
|
|
||||||
|
// Get the mean and the standard deviation
|
||||||
|
double mean = super.evaluate(values, begin, length);
|
||||||
|
|
||||||
|
// Calc the std, this is implemented here instead of using the
|
||||||
|
// standardDeviation method eliminate a duplicate pass to get the mean
|
||||||
|
double accum = 0.0;
|
||||||
|
double accum2 = 0.0;
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
|
accum += Math.pow((values[i] - mean), 2.0);
|
||||||
|
accum2 += (values[i] - mean);
|
||||||
|
}
|
||||||
|
double stdDev =
|
||||||
|
Math.sqrt(
|
||||||
|
(accum - (Math.pow(accum2, 2) / ((double) length)))
|
||||||
|
/ (double) (length - 1));
|
||||||
|
|
||||||
|
// Calculate the skew as the sum the cubes of the distance
|
||||||
|
// from the mean divided by the standard deviation.
|
||||||
|
double accum3 = 0.0;
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
|
accum3 += Math.pow((values[i] - mean) / stdDev, 3.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Get N
|
||||||
|
double n = length;
|
||||||
|
|
||||||
|
// Calculate skewness
|
||||||
|
skew = (n / ((n - 1) * (n - 2))) * accum3;
|
||||||
|
|
||||||
|
return skew;
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -53,35 +53,48 @@
|
||||||
*/
|
*/
|
||||||
package org.apache.commons.math.stat.univariate.moment;
|
package org.apache.commons.math.stat.univariate.moment;
|
||||||
|
|
||||||
|
import org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @author Mark Diggory
|
* @author Mark Diggory
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
public class StandardDeviation extends Variance {
|
public class StandardDeviation extends AbstractStorelessUnivariateStatistic {
|
||||||
|
|
||||||
protected double std = Double.NaN;
|
private double value = Double.NaN;
|
||||||
|
|
||||||
|
private Variance var = new Variance();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
*/
|
*/
|
||||||
public double increment(double d) {
|
public double increment(double d) {
|
||||||
std = Math.sqrt(super.increment(d));
|
var.increment(d);
|
||||||
return std;
|
value = Math.sqrt(var.getValue());
|
||||||
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
||||||
*/
|
*/
|
||||||
public double getValue() {
|
public double getValue() {
|
||||||
return std;
|
return value;
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
|
||||||
*/
|
|
||||||
protected void internalClear() {
|
|
||||||
super.internalClear();
|
|
||||||
std = Double.NaN;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
|
*/
|
||||||
|
public void clear() {
|
||||||
|
var.clear();
|
||||||
|
value = Double.NaN;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (non-Javadoc)
|
||||||
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
|
*/
|
||||||
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
|
double tmp = var.evaluate(values, begin, length);
|
||||||
|
return tmp != 0.0 ? Math.sqrt(tmp) : 0.0;
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
|
@ -53,22 +53,11 @@
|
||||||
*/
|
*/
|
||||||
package org.apache.commons.math.stat.univariate.moment;
|
package org.apache.commons.math.stat.univariate.moment;
|
||||||
|
|
||||||
import org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic;
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @author Mark Diggory
|
* @author Mark Diggory
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
public class ThirdMoment extends AbstractStorelessUnivariateStatistic{
|
public class ThirdMoment extends SecondMoment{
|
||||||
|
|
||||||
/** count of values that have been added */
|
|
||||||
protected int n = 0;
|
|
||||||
|
|
||||||
/** first moment of values that have been added */
|
|
||||||
protected double m1 = Double.NaN;
|
|
||||||
|
|
||||||
/** second moment of values that have been added */
|
|
||||||
protected double m2 = Double.NaN;
|
|
||||||
|
|
||||||
/** third moment of values that have been added */
|
/** third moment of values that have been added */
|
||||||
protected double m3 = Double.NaN;
|
protected double m3 = Double.NaN;
|
||||||
|
@ -82,6 +71,7 @@ public class ThirdMoment extends AbstractStorelessUnivariateStatistic{
|
||||||
}
|
}
|
||||||
|
|
||||||
n++;
|
n++;
|
||||||
|
|
||||||
double dev = d - m1;
|
double dev = d - m1;
|
||||||
double v = dev / ((double) n);
|
double v = dev / ((double) n);
|
||||||
double v2 = v * v;
|
double v2 = v * v;
|
||||||
|
@ -108,10 +98,11 @@ public class ThirdMoment extends AbstractStorelessUnivariateStatistic{
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public void clear() {
|
||||||
n = 0;
|
super.clear();
|
||||||
m1 = m2 = m3 = Double.NaN;
|
m3 = Double.NaN;
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
|
@ -53,23 +53,33 @@
|
||||||
*/
|
*/
|
||||||
package org.apache.commons.math.stat.univariate.moment;
|
package org.apache.commons.math.stat.univariate.moment;
|
||||||
|
|
||||||
|
import org
|
||||||
|
.apache
|
||||||
|
.commons
|
||||||
|
.math
|
||||||
|
.stat
|
||||||
|
.univariate
|
||||||
|
.AbstractStorelessUnivariateStatistic;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @author Mark Diggory
|
* @author Mark Diggory
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
public class Variance extends SecondMoment {
|
public class Variance extends SecondMoment {
|
||||||
|
|
||||||
protected double variance = Double.NaN;
|
private double variance = Double.NaN;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
*/
|
*/
|
||||||
public double increment(double d) {
|
public double increment(double d) {
|
||||||
super.increment(d);
|
super.increment(d);
|
||||||
variance = (n <= 1) ? 0.0 : m2 / (double) (n - 1);
|
|
||||||
|
variance = (n < 1) ? 0.0 : m2 / (double)(n - 1);
|
||||||
|
|
||||||
return variance;
|
return variance;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
||||||
*/
|
*/
|
||||||
|
@ -78,10 +88,35 @@ public class Variance extends SecondMoment {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public void clear() {
|
||||||
super.internalClear();
|
super.clear();
|
||||||
variance = Double.NaN;
|
variance = Double.NaN;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* (non-Javadoc)
|
||||||
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
|
*/
|
||||||
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
|
double var = Double.NaN;
|
||||||
|
if (values.length == 1) {
|
||||||
|
var = 0;
|
||||||
|
} else if (values.length > 1) {
|
||||||
|
double m = super.evaluate(values, begin, length);
|
||||||
|
double accum = 0.0;
|
||||||
|
double accum2 = 0.0;
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
|
accum += Math.pow((values[i] - m), 2.0);
|
||||||
|
accum2 += (values[i] - m);
|
||||||
|
}
|
||||||
|
var =
|
||||||
|
(accum - (Math.pow(accum2, 2) / ((double) length)))
|
||||||
|
/ (double) (length - 1);
|
||||||
|
}
|
||||||
|
return var;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -53,14 +53,20 @@
|
||||||
*/
|
*/
|
||||||
package org.apache.commons.math.stat.univariate.rank;
|
package org.apache.commons.math.stat.univariate.rank;
|
||||||
|
|
||||||
import org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic;
|
import org
|
||||||
|
.apache
|
||||||
|
.commons
|
||||||
|
.math
|
||||||
|
.stat
|
||||||
|
.univariate
|
||||||
|
.AbstractStorelessUnivariateStatistic;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @author Mark Diggory
|
* @author Mark Diggory
|
||||||
*/
|
*/
|
||||||
public class Max extends AbstractStorelessUnivariateStatistic {
|
public class Max extends AbstractStorelessUnivariateStatistic {
|
||||||
|
|
||||||
double value = Double.NaN;
|
private double value = Double.NaN;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
|
@ -69,6 +75,13 @@ public class Max extends AbstractStorelessUnivariateStatistic {
|
||||||
return value = Double.isNaN(value) ? d : Math.max(value, d);
|
return value = Double.isNaN(value) ? d : Math.max(value, d);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
|
*/
|
||||||
|
public void clear() {
|
||||||
|
value = Double.NaN;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
||||||
*/
|
*/
|
||||||
|
@ -76,10 +89,17 @@ public class Max extends AbstractStorelessUnivariateStatistic {
|
||||||
return value;
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/* (non-Javadoc)
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
value = Double.NaN;
|
double max = Double.NaN;
|
||||||
|
if (test(values, begin, length)) {
|
||||||
|
max = values[begin];
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
|
max = (max > values[i]) ? max : values[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return max;
|
||||||
}
|
}
|
||||||
}
|
}
|
|
@ -53,22 +53,36 @@
|
||||||
*/
|
*/
|
||||||
package org.apache.commons.math.stat.univariate.rank;
|
package org.apache.commons.math.stat.univariate.rank;
|
||||||
|
|
||||||
import org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic;
|
import org
|
||||||
|
.apache
|
||||||
|
.commons
|
||||||
|
.math
|
||||||
|
.stat
|
||||||
|
.univariate
|
||||||
|
.AbstractStorelessUnivariateStatistic;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @author Mark Diggory
|
* @author Mark Diggory
|
||||||
*/
|
*/
|
||||||
public class Min extends AbstractStorelessUnivariateStatistic {
|
public class Min extends AbstractStorelessUnivariateStatistic {
|
||||||
|
|
||||||
double value = Double.NaN;
|
private double value = Double.NaN;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
*/
|
*/
|
||||||
public double increment(double d) {
|
public double increment(double d) {
|
||||||
return value = Double.isNaN(value) ? d : Math.min(value, d);
|
value = Double.isNaN(value) ? d : Math.min(value, d);
|
||||||
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
|
*/
|
||||||
|
public void clear() {
|
||||||
|
value = Double.NaN;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
||||||
*/
|
*/
|
||||||
|
@ -77,9 +91,16 @@ public class Min extends AbstractStorelessUnivariateStatistic {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
value = Double.NaN;
|
double min = Double.NaN;
|
||||||
|
if (test(values, begin, length)) {
|
||||||
|
min = values[begin];
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
|
min = (min < values[i]) ? min : values[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return min;
|
||||||
}
|
}
|
||||||
}
|
}
|
|
@ -86,36 +86,36 @@ public class Percentile extends AbstractUnivariateStatistic {
|
||||||
* Evaluates the double[] top the specified percentile.
|
* Evaluates the double[] top the specified percentile.
|
||||||
* This does not alter the interal percentile state of the
|
* This does not alter the interal percentile state of the
|
||||||
* statistic.
|
* statistic.
|
||||||
* @param d Is a double[] containing the values
|
* @param values Is a double[] containing the values
|
||||||
* @param p Is the percentile to evaluate to.
|
* @param p Is the percentile to evaluate to.
|
||||||
* @return the result of the evaluation or Double.NaN
|
* @return the result of the evaluation or Double.NaN
|
||||||
* if the array is empty
|
* if the array is empty
|
||||||
*/
|
*/
|
||||||
public double evaluate(double[] d, double p) {
|
public double evaluate(double[] values, double p) {
|
||||||
return evaluate(d, 0,d.length, p);
|
return evaluate(values, 0,values.length, p);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
*/
|
*/
|
||||||
public double evaluate(double[] d, int start, int length) {
|
public double evaluate(double[] values, int start, int length) {
|
||||||
return evaluate(d, start, length, percentile);
|
return evaluate(values, start, length, percentile);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Evaluates the double[] top the specified percentile.
|
* Evaluates the double[] top the specified percentile.
|
||||||
* This does not alter the interal percentile state of the
|
* This does not alter the interal percentile state of the
|
||||||
* statistic.
|
* statistic.
|
||||||
* @param d Is a double[] containing the values
|
* @param values Is a double[] containing the values
|
||||||
* @param begin processing at this point in the array
|
* @param begin processing at this point in the array
|
||||||
* @param length processing at this point in the array
|
* @param length processing at this point in the array
|
||||||
* @param p Is the percentile to evaluate to.*
|
* @param p Is the percentile to evaluate to.*
|
||||||
* @return the result of the evaluation or Double.NaN
|
* @return the result of the evaluation or Double.NaN
|
||||||
* if the array is empty
|
* if the array is empty
|
||||||
*/
|
*/
|
||||||
public double evaluate(double[] d, int start, int length, double p) {
|
public double evaluate(double[] values, int begin, int length, double p) {
|
||||||
|
|
||||||
test(d,start,length);
|
test(values,begin,length);
|
||||||
|
|
||||||
if ((p > 100) || (p <= 0)) {
|
if ((p > 100) || (p <= 0)) {
|
||||||
throw new IllegalArgumentException("invalid percentile value");
|
throw new IllegalArgumentException("invalid percentile value");
|
||||||
|
@ -125,14 +125,14 @@ public class Percentile extends AbstractUnivariateStatistic {
|
||||||
return Double.NaN;
|
return Double.NaN;
|
||||||
}
|
}
|
||||||
if (n == 1) {
|
if (n == 1) {
|
||||||
return d[start]; // always return single value for n = 1
|
return values[begin]; // always return single value for n = 1
|
||||||
}
|
}
|
||||||
double pos = p * (n + 1) / 100;
|
double pos = p * (n + 1) / 100;
|
||||||
double fpos = Math.floor(pos);
|
double fpos = Math.floor(pos);
|
||||||
int intPos = (int) fpos;
|
int intPos = (int) fpos;
|
||||||
double dif = pos - fpos;
|
double dif = pos - fpos;
|
||||||
double[] sorted = new double[length];
|
double[] sorted = new double[length];
|
||||||
System.arraycopy(d, start,sorted, 0, length);
|
System.arraycopy(values, begin,sorted, 0, length);
|
||||||
Arrays.sort(sorted);
|
Arrays.sort(sorted);
|
||||||
|
|
||||||
if (pos < 1) {
|
if (pos < 1) {
|
||||||
|
@ -158,7 +158,7 @@ public class Percentile extends AbstractUnivariateStatistic {
|
||||||
/**
|
/**
|
||||||
* The default internal state of this percentile can be set.
|
* The default internal state of this percentile can be set.
|
||||||
* This will setthat value.
|
* This will setthat value.
|
||||||
* @param d a value between 0 <= p <= 100
|
* @param p a value between 0 <= p <= 100
|
||||||
*/
|
*/
|
||||||
public void setPercentile(double p) {
|
public void setPercentile(double p) {
|
||||||
percentile = p;
|
percentile = p;
|
||||||
|
|
|
@ -69,33 +69,47 @@ public class Product extends AbstractStorelessUnivariateStatistic {
|
||||||
/**
|
/**
|
||||||
* The current Running Product.
|
* The current Running Product.
|
||||||
*/
|
*/
|
||||||
double product = Double.NaN;
|
private double value = Double.NaN;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
*/
|
*/
|
||||||
public double increment(double d) {
|
public double increment(double d) {
|
||||||
if (init) {
|
if (Double.isNaN(value)) {
|
||||||
init = false;
|
value = d;
|
||||||
product = d;
|
|
||||||
} else {
|
} else {
|
||||||
product *= d;
|
value *= d;
|
||||||
}
|
}
|
||||||
|
|
||||||
return product;
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
||||||
*/
|
*/
|
||||||
public double getValue() {
|
public double getValue() {
|
||||||
return product;
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public void clear() {
|
||||||
product = Double.NaN;
|
value = Double.NaN;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
|
*/
|
||||||
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
|
double product = Double.NaN;
|
||||||
|
if (test(values, begin, length)) {
|
||||||
|
product = 1.0;
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
|
product *= values[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return product;
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
|
@ -70,33 +70,48 @@ public class Sum extends AbstractStorelessUnivariateStatistic {
|
||||||
/**
|
/**
|
||||||
* The currently running sum.
|
* The currently running sum.
|
||||||
*/
|
*/
|
||||||
protected double sum = Double.NaN;
|
private double value = Double.NaN;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
*/
|
*/
|
||||||
public double increment(double d) {
|
public double increment(double d) {
|
||||||
if (init) {
|
if (Double.isNaN(value )) {
|
||||||
init = false;
|
value = d;
|
||||||
sum = d;
|
|
||||||
} else {
|
} else {
|
||||||
sum += d;
|
value += d;
|
||||||
}
|
}
|
||||||
return sum;
|
return value ;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
||||||
*/
|
*/
|
||||||
public double getValue() {
|
public double getValue() {
|
||||||
return sum;
|
return value;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
|
*/
|
||||||
|
public void clear() {
|
||||||
|
value = Double.NaN;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.AbstractStorelessUnivariateStatistic#internalClear()
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
sum = Double.NaN;
|
double sum = Double.NaN;
|
||||||
|
if (test(values, begin, length)) {
|
||||||
|
sum = 0.0;
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
|
sum += values[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return sum;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -68,35 +68,48 @@ import org
|
||||||
public class SumOfLogs extends AbstractStorelessUnivariateStatistic {
|
public class SumOfLogs extends AbstractStorelessUnivariateStatistic {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* The currently running sumLog
|
* The currently running value
|
||||||
*/
|
*/
|
||||||
protected double sumLog = Double.NaN;
|
private double value = Double.NaN;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
*/
|
*/
|
||||||
public double increment(double d) {
|
public double increment(double d) {
|
||||||
if (init) {
|
if (Double.isNaN(value )) {
|
||||||
sumLog = Math.log(d);
|
value = Math.log(d);
|
||||||
init = false;
|
|
||||||
} else {
|
} else {
|
||||||
sumLog += Math.log(d);
|
value += Math.log(d);
|
||||||
}
|
}
|
||||||
|
|
||||||
return sumLog;
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
||||||
*/
|
*/
|
||||||
public double getValue() {
|
public double getValue() {
|
||||||
return sumLog;
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public void clear() {
|
||||||
sumLog = Double.NaN;
|
value = Double.NaN;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
/**
|
||||||
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
|
*/
|
||||||
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
|
double sumLog = Double.NaN;
|
||||||
|
if (test(values, begin, length)) {
|
||||||
|
sumLog = 0.0;
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
|
sumLog += Math.log(values[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return sumLog;
|
||||||
|
}
|
||||||
|
}
|
|
@ -70,33 +70,47 @@ public class SumOfSquares extends AbstractStorelessUnivariateStatistic {
|
||||||
/**
|
/**
|
||||||
* The currently running sumSq
|
* The currently running sumSq
|
||||||
*/
|
*/
|
||||||
protected double sumSq = Double.NaN;
|
private double value = Double.NaN;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#increment(double)
|
||||||
*/
|
*/
|
||||||
public double increment(double d) {
|
public double increment(double d) {
|
||||||
if (init) {
|
if (Double.isNaN(value )) {
|
||||||
init = false;
|
value = d * d;
|
||||||
sumSq = d * d;
|
|
||||||
} else {
|
} else {
|
||||||
sumSq += d * d;
|
value += d * d;
|
||||||
}
|
}
|
||||||
return sumSq;
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#getValue()
|
||||||
*/
|
*/
|
||||||
public double getValue() {
|
public double getValue() {
|
||||||
return sumSq;
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
* @see org.apache.commons.math.stat.univariate.StorelessUnivariateStatistic#clear()
|
||||||
*/
|
*/
|
||||||
protected void internalClear() {
|
public void clear() {
|
||||||
sumSq = Double.NaN;
|
value = Double.NaN;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @see org.apache.commons.math.stat.univariate.UnivariateStatistic#evaluate(double[], int, int)
|
||||||
|
*/
|
||||||
|
public double evaluate(double[] values, int begin, int length) {
|
||||||
|
double sumSq = Double.NaN;
|
||||||
|
if (test(values, begin, length)) {
|
||||||
|
sumSq = 0.0;
|
||||||
|
for (int i = begin; i < begin + length; i++) {
|
||||||
|
sumSq += Math.pow(values[i], 2.0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return sumSq;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
Loading…
Reference in New Issue