diff --git a/src/java/org/apache/commons/math/random/EmpiricalDistribution.java b/src/java/org/apache/commons/math/random/EmpiricalDistribution.java index 55a2523b2..938a5b91c 100644 --- a/src/java/org/apache/commons/math/random/EmpiricalDistribution.java +++ b/src/java/org/apache/commons/math/random/EmpiricalDistribution.java @@ -1,12 +1,12 @@ /* * Copyright 2003-2004 The Apache Software Foundation. - * + * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at - * + * * http://www.apache.org/licenses/LICENSE-2.0 - * + * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @@ -28,8 +28,8 @@ import org.apache.commons.math.stat.univariate.SummaryStatistics; * empirical probability distribution -- a probability distribution derived * from observed data without making any assumptions about the functional form * of the population distribution that the data come from.
- * Implementations of this interface maintain data structures, called - * distribution digests, that describe empirical distributions and + * Implementations of this interface maintain data structures, called + * distribution digests, that describe empirical distributions and * support the following operations:
EmpiricalDistribution
implementations to
+ * Applications can use EmpiricalDistribution
implementations to
* build grouped frequnecy histograms representing the input data or to
* generate random values "like" those in the input file -- i.e., the values
* generated will follow the distribution of the values in the file.
- * @version $Revision: 1.17 $ $Date: 2004/04/12 02:27:49 $
+ * @version $Revision: 1.18 $ $Date: 2004/06/14 23:15:14 $
*/
public interface EmpiricalDistribution {
-
+
/**
* Computes the empirical distribution from the provided
* array of numbers.
* @param dataArray the data array
*/
- void load(double[] dataArray);
-
+ void load(double[] dataArray);
+
/**
* Computes the empirical distribution from the input file.
* @param filePath fully qualified name of a file in the local file system
* @throws IOException if an IO error occurs
*/
- void load(String filePath) throws IOException;
-
+ void load(String filePath) throws IOException;
+
/**
* Computes the empirical distribution from the input file.
* @param file the input file
* @throws IOException if an IO error occurs
*/
void load(File file) throws IOException;
-
+
/**
* Computes the empirical distribution using data read from a URL.
* @param url url of the input file
* @throws IOException if an IO error occurs
*/
void load(URL url) throws IOException;
-
- /**
+
+ /**
* Generates a random value from this distribution.
* Preconditions:EmpiricalDistribution
interface. This implementation
- * uses what amounts to the
+ * uses what amounts to the
*
* Variable Kernel Method with Gaussian smoothing:* Digesting the input file - *
binCount
"bins."sampleStats
and
- * beanStats
abstracting the source of data.
+ * Provides methods for computing sampleStats
and
+ * beanStats
abstracting the source of data.
*/
private abstract class DataAdapter{
- public abstract void computeBinStats(double min, double delta)
+ public abstract void computeBinStats(double min, double delta)
throws Exception;
public abstract void computeStats() throws Exception;
}
/**
* Factory of DataAdapter
objects. For every supported source
* of data (array of doubles, file, etc.) an instance of the proper object
- * is returned.
+ * is returned.
*/
private class DataAdapterFactory{
public DataAdapter getAdapter(Object in) {
@@ -206,7 +206,7 @@ public class EmpiricalDistributionImpl implements Serializable, EmpiricalDistrib
/**
* Computes binStats
*/
- public void computeBinStats(double min, double delta)
+ public void computeBinStats(double min, double delta)
throws IOException {
String str = null;
double val = 0.0d;
@@ -263,17 +263,17 @@ public class EmpiricalDistributionImpl implements Serializable, EmpiricalDistrib
for (int i = 0; i < inputArray.length; i++) {
SummaryStatistics stats =
(SummaryStatistics) binStats.get(
- Math.max((int) Math.ceil((inputArray[i] - min) / delta)
+ Math.max((int) Math.ceil((inputArray[i] - min) / delta)
- 1, 0));
stats.addValue(inputArray[i]);
}
- }
+ }
}
/**
* Fills binStats array (second pass through data file).
*/
- private void fillBinStats(Object in) throws IOException {
+ private void fillBinStats(Object in) throws IOException {
// Load array of bin upper bounds -- evenly spaced from min - max
double min = sampleStats.getMin();
double max = sampleStats.getMax();
@@ -284,7 +284,7 @@ public class EmpiricalDistributionImpl implements Serializable, EmpiricalDistrib
binUpperBounds[i] = binUpperBounds[i-1] + delta;
}
binUpperBounds[binCount -1] = max;
-
+
// Initialize binStats ArrayList
if (!binStats.isEmpty()) {
binStats.clear();
@@ -293,7 +293,7 @@ public class EmpiricalDistributionImpl implements Serializable, EmpiricalDistrib
SummaryStatistics stats = SummaryStatistics.newInstance();
binStats.add(i,stats);
}
-
+
// Filling data in binStats Array
DataAdapterFactory aFactory = new DataAdapterFactory();
DataAdapter da = aFactory.getAdapter(in);
@@ -306,7 +306,7 @@ public class EmpiricalDistributionImpl implements Serializable, EmpiricalDistrib
throw new IOException(e.getMessage());
}
}
-
+
// Assign upperBounds based on bin counts
upperBounds = new double[binCount];
upperBounds[0] =
@@ -319,27 +319,27 @@ public class EmpiricalDistributionImpl implements Serializable, EmpiricalDistrib
}
upperBounds[binCount-1] = 1.0d;
}
-
+
/**
* Generates a random value from this distribution
* @return the random value.
* @throws IllegalStateException if the distribution has not been loaded
*/
- public double getNextValue() throws IllegalStateException {
-
+ public double getNextValue() throws IllegalStateException {
+
if (!loaded) {
throw new IllegalStateException("distribution not loaded");
}
-
+
// Start with a uniformly distributed random number in (0,1)
double x = Math.random();
-
+
// Use this to select the bin and generate a Gaussian within the bin
for (int i = 0; i < binCount; i++) {
if (x <= upperBounds[i]) {
SummaryStatistics stats = (SummaryStatistics)binStats.get(i);
- if (stats.getN() > 0) {
- if (stats.getStandardDeviation() > 0) { // more than one obs
+ if (stats.getN() > 0) {
+ if (stats.getStandardDeviation() > 0) { // more than one obs
return randomData.nextGaussian
(stats.getMean(),stats.getStandardDeviation());
} else {
@@ -350,41 +350,41 @@ public class EmpiricalDistributionImpl implements Serializable, EmpiricalDistrib
}
throw new RuntimeException("No bin selected");
}
-
+
public void loadDistribution(String filePath) throws IOException {
throw new UnsupportedOperationException("Not Implemented yet :-(");
}
-
+
public void loadDistribution(File file) throws IOException {
throw new UnsupportedOperationException("Not Implemented yet :-(");
}
-
- public void saveDistribution(String filePath) throws
+
+ public void saveDistribution(String filePath) throws
IOException,IllegalStateException {
throw new UnsupportedOperationException("Not Implemented yet :-(");
}
-
- public void saveDistribution(File file) throws
+
+ public void saveDistribution(File file) throws
IOException,IllegalStateException {
throw new UnsupportedOperationException("Not Implemented yet :-(");
}
-
+
public SummaryStatistics getSampleStats() {
return sampleStats;
}
-
+
public int getBinCount() {
return binCount;
}
-
+
public ArrayList getBinStats() {
return binStats;
}
-
+
public double[] getUpperBounds() {
return upperBounds;
}
-
+
public boolean isLoaded() {
return loaded;
}
diff --git a/src/java/org/apache/commons/math/random/RandomData.java b/src/java/org/apache/commons/math/random/RandomData.java
index 8de2d7333..d98565e2a 100644
--- a/src/java/org/apache/commons/math/random/RandomData.java
+++ b/src/java/org/apache/commons/math/random/RandomData.java
@@ -1,12 +1,12 @@
/*
* Copyright 2003-2004 The Apache Software Foundation.
- *
+ *
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
- *
+ *
* http://www.apache.org/licenses/LICENSE-2.0
- *
+ *
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@@ -19,58 +19,37 @@ import java.util.Collection;
/**
* Random data generation utilities
- * @version $Revision: 1.9 $ $Date: 2004/04/11 19:00:45 $
+ * @version $Revision: 1.10 $ $Date: 2004/06/14 23:15:15 $
*/
-public interface RandomData {
+public interface RandomData {
/**
* Generates a random string of hex characters of length
* len
.
*
- * The generated string will be random, but not cryptographically
- * secure. To generate cryptographically secure strings, use
+ * The generated string will be random, but not cryptographically
+ * secure. To generate cryptographically secure strings, use
* nextSecureHexString
*
* Preconditions:
len > 0
(otherwise an IllegalArgumentException
- * is thrown.)len
- */
- String nextHexString(int len);
-
- /**
- * Generates a uniformly distributed random integer between
- * lower
and upper
(endpoints included).
- *
- * The generated integer will be random, but not cryptographically secure.
- * To generate cryptographically secure integer sequences, use
- * nextSecureInt
.
- *
- * Preconditions:
lower < upper
(otherwise an IllegalArgumentException
+ * len > 0
(otherwise an IllegalArgumentException
* is thrown.)lower
- * and less than or equal to upper
.
+ * @param len the length of the string to be generated
+ * @return random string of hex characters of length len
*/
- int nextInt(int lower, int upper);
-
+ String nextHexString(int len);
+
/**
- * Generates a uniformly distributed random long integer between
+ * Generates a uniformly distributed random integer between
* lower
and upper
(endpoints included).
*
- * The generated long integer values will be random, but not
- * cryptographically secure.
- * To generate cryptographically secure sequences of longs, use
- * nextSecureLong
+ * The generated integer will be random, but not cryptographically secure.
+ * To generate cryptographically secure integer sequences, use
+ * nextSecureInt
.
*
* Preconditions:
lower < upper
(otherwise an IllegalArgumentException
+ * lower < upper
(otherwise an IllegalArgumentException
* is thrown.)lower
* and less than or equal to upper
.
*/
- long nextLong(long lower, long upper);
-
+ int nextInt(int lower, int upper);
+
/**
- * Generates a random string of hex characters from a secure random
+ * Generates a uniformly distributed random long integer between
+ * lower
and upper
(endpoints included).
+ *
+ * The generated long integer values will be random, but not
+ * cryptographically secure.
+ * To generate cryptographically secure sequences of longs, use
+ * nextSecureLong
+ *
+ * Preconditions:
lower < upper
(otherwise an IllegalArgumentException
+ * is thrown.)lower
+ * and less than or equal to upper
.
+ */
+ long nextLong(long lower, long upper);
+
+ /**
+ * Generates a random string of hex characters from a secure random
* sequence.
*
- * If cryptographic security is not required,
+ * If cryptographic security is not required,
* use nextHexString()
.
*
* Preconditions:
len > 0
(otherwise an IllegalArgumentException
+ * len > 0
(otherwise an IllegalArgumentException
* is thrown.)lower
and upper
(endpoints included)
+ * Generates a uniformly distributed random integer between
+ * lower
and upper
(endpoints included)
* from a secure random sequence.
*
- * Sequences of integers generated using this method will be
- * cryptographically secure. If cryptographic security is not required,
- * nextInt
should be used instead of this method.
+ * Sequences of integers generated using this method will be
+ * cryptographically secure. If cryptographic security is not required,
+ * nextInt
should be used instead of this method.
*
* Definition: * * Secure Random Sequence *
* Preconditions:
lower < upper
(otherwise an IllegalArgumentException
+ * lower < upper
(otherwise an IllegalArgumentException
* is thrown.)lower
* and less than or equal to upper
.
*/
- int nextSecureInt(int lower, int upper);
-
+ int nextSecureInt(int lower, int upper);
+
/**
* Generates a random long integer between lower
* and upper
(endpoints included).
- * Sequences of long values generated using this method will be
+ * Sequences of long values generated using this method will be
* cryptographically secure. If cryptographic security is not required,
* nextLong
should be used instead of this method.
*
@@ -134,7 +134,7 @@ public interface RandomData { * Secure Random Sequence *
* Preconditions:
lower < upper
(otherwise an IllegalArgumentException
+ * lower < upper
(otherwise an IllegalArgumentException
* is thrown.)lower
* and less than or equal to upper
.
*/
- long nextSecureLong(long lower, long upper);
-
- /**
- * Generates a random value from the Poisson distribution with
+ long nextSecureLong(long lower, long upper);
+
+ /**
+ * Generates a random value from the Poisson distribution with
* the given mean.
* - * Definition: + * Definition: * * Poisson Distribution *
* Preconditions:
- * Definition: + * Definition: * * Normal Distribution *
* Preconditions:
sigma > 0
(otherwise an IllegalArgumentException
+ * sigma > 0
(otherwise an IllegalArgumentException
* is thrown.)mean
.
* - * Definition: + * Definition: * * Exponential Distribution *
* Preconditions:
mu >= 0
(otherwise an IllegalArgumentException
+ * mu >= 0
(otherwise an IllegalArgumentException
* is thrown.)lower
,upper
) (i.e., endpoints excluded).
*
- * Definition:
+ * Definition:
*
- * Uniform Distribution lower
and
- * upper - lower
are the
+ * Uniform Distribution lower
and
+ * upper - lower
are the
*
* location and scale parameters, respectively.
*
* Preconditions:
lower < upper
(otherwise an IllegalArgumentException
+ * lower < upper
(otherwise an IllegalArgumentException
* is thrown.)k
whose entries
* are selected randomly, without repetition, from the integers
- * 0 through n-1
(inclusive).
+ * 0 through n-1 (inclusive).
*
* Generated arrays represent permutations
- * of n
taken k
at a time.
+ * of n
taken k
at a time.
*
* Preconditions:
k <= n
k
objects selected randomly
- * from the Collection c
.
+ * from the Collection c
.
*
* Sampling from c
* is without replacement; but if c
contains identical
* objects, the sample may include repeats. If all elements of
- * c
are distinct, the resulting object array represents a
+ * c are distinct, the resulting object array represents a
*
* Simple Random Sample of size
* k
from the elements of c
.
- *
+ *
* Preconditions:
RandomData
interface using
- * java.util.Random
and
- * java.util.Random.SecureRandom
instances to generate data.
+ * Implements the RandomData
interface using
+ * java.util.Random
and
+ * java.util.Random.SecureRandom
instances to generate data.
*
- * Supports reseeding the underlying
+ * Supports reseeding the underlying
*
* PRNG. The SecurityProvider
and Algorithm
* used by the SecureRandom
instance can also be reset.
*
- * For details on the PRNGs, see the JDK documentation for
- * java.util.Random
and
+ * For details on the PRNGs, see the JDK documentation for
+ * java.util.Random
and
* java.util.Random.SecureRandom
*
* Usage Notes:
Random
and
+ * Instance variables are used to maintain Random
and
* SecureRandom
instances used in data generation. Therefore,
* to generate a random sequence of values or strings, you should use just
* one RandomDataImpl
instance repeatedly.reSeed
and reSeedSecure
methods delegate
- * to the corresponding methods on the underlying Random
and
- * SecureRandom
instances. Therefore, the contracts of these
- * methods are as defined in the JDK documentation. In particular,
- * reSeed(long)
fully resets the initial state of the non-secure
- * random number generator (so that reseeding with a specific value always
+ * The reSeed
and reSeedSecure
methods delegate
+ * to the corresponding methods on the underlying Random
and
+ * SecureRandom
instances. Therefore, the contracts of these
+ * methods are as defined in the JDK documentation. In particular,
+ * reSeed(long)
fully resets the initial state of the non-secure
+ * random number generator (so that reseeding with a specific value always
* results in the same subsequent random sequence); whereas reSeedSecure(long)
- * does not reinitialize the secure random number generator
- * (so secure sequences started with calls to reseedSecure(long) won't be
+ * does not reinitialize the secure random number generator
+ * (so secure sequences started with calls to reseedSecure(long) won't be
* identical).lower
and upper
, inclusive.
* @param lower the lower bound.
* @param upper the upper bound.
* @return the random integer.
- */
+ */
public long nextLong(long lower, long upper) {
if (lower >= upper) {
throw new IllegalArgumentException
@@ -161,19 +161,19 @@ public class RandomDataImpl implements RandomData, Serializable {
Random rand = getRan();
return lower + (long) (rand.nextDouble() * (upper - lower + 1));
}
-
+
/**
- * Algorithm Description: hex strings are generated in
+ * Algorithm Description: hex strings are generated in
* 40-byte segments using a 3-step process. SecureRandom
.
- * TODO: find external reference or provide justification for the claim
+ * TODO: find external reference or provide justification for the claim
* that this yields a cryptographically secure sequence of hex strings.
* @param len the desired string length.
* @return the random string.
@@ -182,7 +182,7 @@ public class RandomDataImpl implements RandomData, Serializable {
if (len <= 0) {
throw new IllegalArgumentException("length must be positive");
}
-
+
// Get SecureRandom and setup Digest provider
SecureRandom secRan = getSecRan();
MessageDigest alg = null;
@@ -191,31 +191,31 @@ public class RandomDataImpl implements RandomData, Serializable {
} catch (NoSuchAlgorithmException ex) {
return null; // gulp FIXME? -- this *should* never fail.
}
- alg.reset();
-
+ alg.reset();
+
//Compute number of iterations required (40 bytes each)
int numIter = (len / 40) + 1;
-
+
StringBuffer outBuffer = new StringBuffer();
for (int iter = 1; iter < numIter + 1; iter++) {
byte[] randomBytes = new byte[40];
secRan.nextBytes(randomBytes);
alg.update(randomBytes);
-
+
//Compute hash -- will create 20-byte binary hash
byte hash[] = alg.digest();
-
+
//Loop over the hash, converting each byte to 2 hex digits
for (int i = 0; i < hash.length; i++) {
Integer c = new Integer(hash[i]);
-
+
/* Add 128 to byte value to make interval 0-255
* This guarantees <= 2 hex digits from toHexString()
- * toHexString would otherwise add 2^32 to negative
+ * toHexString would otherwise add 2^32 to negative
* arguments
*/
String hex = Integer.toHexString(c.intValue() + 128);
-
+
//Keep strings uniform length -- guarantees 40 bytes
if (hex.length() == 1) {
hex = "0" + hex;
@@ -225,7 +225,7 @@ public class RandomDataImpl implements RandomData, Serializable {
}
return outBuffer.toString().substring(0, len);
}
-
+
/**
* Generate a random int value uniformly distributed between
* lower
and upper
, inclusive. This algorithm
@@ -233,7 +233,7 @@ public class RandomDataImpl implements RandomData, Serializable {
* @param lower the lower bound.
* @param upper the upper bound.
* @return the random integer.
- */
+ */
public int nextSecureInt(int lower, int upper) {
if (lower >= upper) {
throw new IllegalArgumentException
@@ -242,7 +242,7 @@ public class RandomDataImpl implements RandomData, Serializable {
SecureRandom sec = getSecRan();
return lower + (int) (sec.nextDouble() * (upper - lower + 1));
}
-
+
/**
* Generate a random long value uniformly distributed between
* lower
and upper
, inclusive. This algorithm
@@ -250,7 +250,7 @@ public class RandomDataImpl implements RandomData, Serializable {
* @param lower the lower bound.
* @param upper the upper bound.
* @return the random integer.
- */
+ */
public long nextSecureLong(long lower, long upper) {
if (lower >= upper) {
throw new IllegalArgumentException
@@ -259,16 +259,16 @@ public class RandomDataImpl implements RandomData, Serializable {
SecureRandom sec = getSecRan();
return lower + (long) (sec.nextDouble() * (upper - lower + 1));
}
-
- /**
+
+ /**
* Generates a random long value from the Poisson distribution with the given mean.
*
* Algorithm Description: - * Uses simulation of a Poisson process using Uniform deviates, as - * described + * Uses simulation of a Poisson process using Uniform deviates, as + * described * * here. - *
+ *
* The Poisson process (and hence value returned) is bounded by 1000 * mean.
* @param mean mean of the Poisson distribution.
* @return the random Poisson value.
@@ -282,7 +282,7 @@ public class RandomDataImpl implements RandomData, Serializable {
double r = 1.0d;
double rnd = 1.0d;
Random rand = getRan();
- while (n < 1000 * mean) {
+ while (n < 1000 * mean) {
rnd = rand.nextDouble();
r = r * rnd;
if (r >= p) {
@@ -293,9 +293,9 @@ public class RandomDataImpl implements RandomData, Serializable {
}
return n;
}
-
+
/**
- * Generate a random value from a Normal distribution. This algorithm
+ * Generate a random value from a Normal distribution. This algorithm
* generates random values for the general Normal distribution with the
* given mean, mu
and the given standard deviation,
* sigma
.
@@ -310,10 +310,10 @@ public class RandomDataImpl implements RandomData, Serializable {
Random rand = getRan();
return sigma * rand.nextGaussian() + mu;
}
-
+
/**
- * Algorithm Description: Uses the
- *
+ * Algorithm Description: Uses the
+ *
* Inversion Method to generate exponential from uniform deviates.
* @param mean the mean of the distribution.
* @return the random Exponential value.
@@ -330,12 +330,12 @@ public class RandomDataImpl implements RandomData, Serializable {
}
return -mean * Math.log(unif);
}
-
+
/**
- * Algorithm Description: scales the output of
+ * Algorithm Description: scales the output of
* Random.nextDouble(), but rejects 0 values (i.e., will generate another
- * random double if Random.nextDouble() returns 0).
- * This is necessary to provide a symmetric output interval
+ * random double if Random.nextDouble() returns 0).
+ * This is necessary to provide a symmetric output interval
* (both endpoints excluded).
* @param lower the lower bound.
* @param upper the upper bound.
@@ -347,21 +347,21 @@ public class RandomDataImpl implements RandomData, Serializable {
("lower bound must be <= upper bound");
}
Random rand = getRan();
-
+
// insure nextDouble() isn't 0.0
double u = rand.nextDouble();
while(u <= 0.0){
u = rand.nextDouble();
}
-
+
return lower + u * (upper - lower);
}
-
- /**
+
+ /**
* Returns the static Random used to generate random data.
*
* Creates and initializes if null. - * + * * @return the static Random used to generate random data */ private Random getRan() { @@ -371,8 +371,8 @@ public class RandomDataImpl implements RandomData, Serializable { } return rand; } - - /** + + /** * Returns the static SecureRandom used to generate secure random data. *
* Creates and initializes if null. @@ -386,7 +386,7 @@ public class RandomDataImpl implements RandomData, Serializable { } return secRand; } - + /** * Reseeds the random number generator with the supplied seed. *
@@ -400,11 +400,11 @@ public class RandomDataImpl implements RandomData, Serializable { } rand.setSeed(seed); } - + /** * Reseeds the secure random number generator with the current time - * in milliseconds. - *
+ * in milliseconds. + *
* Will create and initialize if null. */ public void reSeedSecure() { @@ -413,7 +413,7 @@ public class RandomDataImpl implements RandomData, Serializable { } secRand.setSeed(System.currentTimeMillis()); } - + /** * Reseeds the secure random number generator with the supplied seed. *
@@ -427,7 +427,7 @@ public class RandomDataImpl implements RandomData, Serializable { } secRand.setSeed(seed); } - + /** * Reseeds the random number generator with the current time * in milliseconds. @@ -438,29 +438,29 @@ public class RandomDataImpl implements RandomData, Serializable { } rand.setSeed(System.currentTimeMillis()); } - + /** * Sets the PRNG algorithm for the underlying SecureRandom instance - * using the Security Provider API. The Security Provider API is defined in + * using the Security Provider API. The Security Provider API is defined in * * Java Cryptography Architecture API Specification & Reference. *
- * USAGE NOTE: This method carries significant + * USAGE NOTE: This method carries significant * overhead and may take several seconds to execute. *
* * @param algorithm the name of the PRNG algorithm - * @param provider the name of the provider - * @throws NoSuchAlgorithmException if the specified algorithm + * @param provider the name of the provider + * @throws NoSuchAlgorithmException if the specified algorithm * is not available - * @throws NoSuchProviderException if the specified provider + * @throws NoSuchProviderException if the specified provider * is not installed */ - public void setSecureAlgorithm(String algorithm, String provider) + public void setSecureAlgorithm(String algorithm, String provider) throws NoSuchAlgorithmException, NoSuchProviderException { secRand = SecureRandom.getInstance(algorithm, provider); } - + /** * Uses a 2-cycle permutation shuffle to generate a random permutation. * The shuffling process is described @@ -474,35 +474,35 @@ public class RandomDataImpl implements RandomData, Serializable { if (k > n) { throw new IllegalArgumentException ("permutation k exceeds n"); - } + } if (k == 0) { throw new IllegalArgumentException ("permutation k must be > 0"); } - + int[] index = getNatural(n); shuffle(index, n - k); int[] result = new int[k]; for (int i = 0; i < k; i++) { result[i] = index[n - i - 1]; } - + return result; } - + /** * Uses a 2-cycle permutation shuffle to generate a random permutation. - * Algorithm Description: Uses a 2-cycle permutation - * shuffle to generate a random permutation ofc.size()
and
- * then returns the elements whose indexes correspond to the elements of
- * the generated permutation.
- * This technique is described, and proven to generate random samples,
+ * Algorithm Description: Uses a 2-cycle permutation
+ * shuffle to generate a random permutation of c.size()
and
+ * then returns the elements whose indexes correspond to the elements of
+ * the generated permutation.
+ * This technique is described, and proven to generate random samples,
*
* here
* @param c Collection to sample from.
* @param k sample size.
* @return the random sample.
- */
+ */
public Object[] nextSample(Collection c, int k) {
int len = c.size();
if (k > len) {
@@ -513,22 +513,22 @@ public class RandomDataImpl implements RandomData, Serializable {
throw new IllegalArgumentException
("sample size must be > 0");
}
-
+
Object[] objects = c.toArray();
int[] index = nextPermutation(len, k);
Object[] result = new Object[k];
for (int i = 0; i < k; i++) {
result[i] = objects[index[i]];
- }
+ }
return result;
}
-
+
//------------------------Private methods----------------------------------
-
- /**
+
+ /**
* Uses a 2-cycle permutation shuffle to randomly re-order the last elements
* of list.
- *
+ *
* @param list list to be shuffled
* @param end element past which shuffling begins
*/
@@ -536,16 +536,16 @@ public class RandomDataImpl implements RandomData, Serializable {
int target = 0;
for (int i = list.length - 1 ; i >= end; i--) {
if (i == 0) {
- target = 0;
+ target = 0;
} else {
target = nextInt(0, i);
}
int temp = list[target];
list[target] = list[i];
list[i] = temp;
- }
+ }
}
-
+
/**
* Returns an array representing n.
*
@@ -559,5 +559,5 @@ public class RandomDataImpl implements RandomData, Serializable {
}
return natural;
}
-
+
}
\ No newline at end of file
diff --git a/src/java/org/apache/commons/math/random/ValueServer.java b/src/java/org/apache/commons/math/random/ValueServer.java
index da39d4eb1..07ff81fc6 100644
--- a/src/java/org/apache/commons/math/random/ValueServer.java
+++ b/src/java/org/apache/commons/math/random/ValueServer.java
@@ -1,12 +1,12 @@
/*
* Copyright 2003-2004 The Apache Software Foundation.
- *
+ *
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
- *
+ *
* http://www.apache.org/licenses/LICENSE-2.0
- *
+ *
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@@ -26,74 +26,74 @@ import java.net.MalformedURLException;
* Generates values for use in simulation applications.
*
* How values are generated is determined by the mode
- * property.
- *
+ * property. + *
* Supported mode
values are:
valuesFileURL
valuesFileURL
mu
mu
mu
and
+ * mean = mu
and
* standard deviation = sigma
mu
every time.mu
every time.length
with values generated
+ * Returns an array of length length
with values generated
* using getNext() repeatedly.
*
* @param length length of output array
@@ -135,9 +135,9 @@ public class ValueServer implements Serializable {
out[i] = getNext();
}
return out;
- }
-
- /**
+ }
+
+ /**
* Computes the empirical distribution using values from the file
* in valuesFileURL
, using the default number of bins.
*
@@ -153,8 +153,8 @@ public class ValueServer implements Serializable {
empiricalDistribution = new EmpiricalDistributionImpl();
empiricalDistribution.load(valuesFileURL);
}
-
- /**
+
+ /**
* Computes the empirical distribution using values from the file
* in valuesFileURL
and binCount
bins.
*
@@ -168,28 +168,28 @@ public class ValueServer implements Serializable {
* distribution
* @throws IOException if an error occurs reading the input file
*/
- public void computeDistribution(int binCount)
+ public void computeDistribution(int binCount)
throws IOException {
empiricalDistribution = new EmpiricalDistributionImpl(binCount);
empiricalDistribution.load(valuesFileURL);
mu = empiricalDistribution.getSampleStats().getMean();
sigma = empiricalDistribution.getSampleStats().getStandardDeviation();
}
-
+
/** Getter for property mode.
* @return Value of property mode.
*/
public int getMode() {
return mode;
}
-
+
/** Setter for property mode.
* @param mode New value of property mode.
*/
public void setMode(int mode) {
this.mode = mode;
}
-
+
/**
* Getter for
* Preconditions:
* Throws an IOException if the read fails.
*
- * This method will open the
- * The valuesFileURL
* @return Value of property valuesFileURL.
@@ -197,7 +197,7 @@ public class ValueServer implements Serializable {
public URL getValuesFileURL() {
return valuesFileURL;
}
-
+
/**
* Sets the
valuesFileURL
using a string URL representation
* @param url String representation for new valuesFileURL.
@@ -206,7 +206,7 @@ public class ValueServer implements Serializable {
public void setValuesFileURL(String url) throws MalformedURLException {
this.valuesFileURL = new URL(url);
}
-
+
/**
* Sets the valuesFileURL
* @param url New value of property valuesFileURL.
@@ -214,15 +214,15 @@ public class ValueServer implements Serializable {
public void setValuesFileURL(URL url) {
this.valuesFileURL = url;
}
-
+
/** Getter for property empiricalDistribution.
* @return Value of property empiricalDistribution.
*/
public EmpiricalDistribution getEmpiricalDistribution() {
return empiricalDistribution;
- }
-
- /**
+ }
+
+ /**
* Opens valuesFileURL
to use in REPLAY_MODE.
*
* @throws IOException if an error occurs opening the file
@@ -231,8 +231,8 @@ public class ValueServer implements Serializable {
public void openReplayFile() throws IOException {
resetReplayFile();
}
-
- /**
+
+ /**
* Resets REPLAY_MODE file pointer to the beginning of the valuesFileURL
.
*
* @throws IOException if an error occurs opening the file
@@ -246,8 +246,8 @@ public class ValueServer implements Serializable {
}
filePointer = new BufferedReader(new InputStreamReader(valuesFileURL.openStream()));
}
-
- /**
+
+ /**
* Closes valuesFileURL
after use in REPLAY_MODE.
*
* @throws IOException if an error occurs closing the file
@@ -256,66 +256,66 @@ public class ValueServer implements Serializable {
if (filePointer != null) {
filePointer.close();
filePointer = null;
- }
+ }
}
-
+
/** Getter for property mu.
* @return Value of property mu.
*/
public double getMu() {
return mu;
}
-
+
/** Setter for property mu.
* @param mu New value of property mu.
*/
public void setMu(double mu) {
this.mu = mu;
}
-
+
/** Getter for property sigma.
* @return Value of property sigma.
*/
public double getSigma() {
return sigma;
}
-
+
/** Setter for property sigma.
* @param sigma New value of property sigma.
*/
public void setSigma(double sigma) {
this.sigma = sigma;
}
-
+
//------------- private methods ---------------------------------
-
- /**
+
+ /**
* Gets a random value in DIGEST_MODE.
*
*
*
- * @return next random value from the empirical distribution digest
+ * @return next random value from the empirical distribution digest
*/
private double getNextDigest() {
if ((empiricalDistribution == null) ||
(empiricalDistribution.getBinStats().size() == 0)) {
throw new IllegalStateException("Digest not initialized");
}
- return empiricalDistribution.getNextValue();
+ return empiricalDistribution.getNextValue();
}
-
+
/**
* Gets next sequential value from the computeDistribution()
- * must have completed successfully; otherwise an
+ * must have completed successfully; otherwise an
* IllegalStateException
will be thrownvaluesFileURL
.
* valuesFileURL
if there is no
+ * This method will open the valuesFileURL
if there is no
* replay file open.
* valuesFileURL
will be closed and reopened to wrap around
+ * The valuesFileURL
will be closed and reopened to wrap around
* from EOF to BOF if EOF is encountered.
*
* @return next value from the replay file
@@ -330,29 +330,29 @@ public class ValueServer implements Serializable {
closeReplayFile();
resetReplayFile();
str = filePointer.readLine();
- }
+ }
return new Double(str).doubleValue();
}
-
- /**
- * Gets a uniformly distributed random value with mean = mu.
+
+ /**
+ * Gets a uniformly distributed random value with mean = mu.
*
* @return random uniform value
*/
private double getNextUniform() {
return randomData.nextUniform(0, 2 * mu);
}
-
- /**
- * Gets an exponentially distributed random value with mean = mu.
+
+ /**
+ * Gets an exponentially distributed random value with mean = mu.
*
* @return random exponential value
*/
private double getNextExponential() {
- return randomData.nextExponential(mu);
+ return randomData.nextExponential(mu);
}
-
- /**
+
+ /**
* Gets a Gaussian distributed random value with mean = mu
* and standard deviation = sigma.
*
@@ -361,5 +361,5 @@ public class ValueServer implements Serializable {
private double getNextGaussian() {
return randomData.nextGaussian(mu, sigma);
}
-
+
}
diff --git a/src/java/org/apache/commons/math/random/package.html b/src/java/org/apache/commons/math/random/package.html
index ac0c11ef6..00abf5795 100644
--- a/src/java/org/apache/commons/math/random/package.html
+++ b/src/java/org/apache/commons/math/random/package.html
@@ -14,6 +14,6 @@
See the License for the specific language governing permissions and
limitations under the License.
-->
-
-