Merged changes in MATH_1_1 branch to trunk. This includes revision 232577 through revision 234481.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@239294 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
71fb92ebd4
commit
fd07147f86
|
@ -66,7 +66,19 @@ public class Complex implements Serializable {
|
|||
if (isNaN()) {
|
||||
return Double.NaN;
|
||||
}
|
||||
return Math.sqrt(squareSum());
|
||||
if (Math.abs(real) < Math.abs(imaginary)) {
|
||||
if (imaginary == 0.0) {
|
||||
return Math.abs(real);
|
||||
}
|
||||
double q = real / imaginary;
|
||||
return (Math.abs(imaginary) * Math.sqrt(1 + q*q));
|
||||
} else {
|
||||
if (real == 0.0) {
|
||||
return Math.abs(imaginary);
|
||||
}
|
||||
double q = imaginary / real;
|
||||
return (Math.abs(real) * Math.sqrt(1 + q*q));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -108,17 +120,29 @@ public class Complex implements Serializable {
|
|||
if (isNaN() || rhs.isNaN()) {
|
||||
return NaN;
|
||||
}
|
||||
|
||||
if (Math.abs(rhs.getReal()) < Math.abs(rhs.getImaginary())) {
|
||||
double q = rhs.getReal() / rhs.getImaginary();
|
||||
double d = (rhs.getReal() * q) + rhs.getImaginary();
|
||||
return new Complex(((real * q) + imaginary) / d,
|
||||
((imaginary * q) - real) / d);
|
||||
|
||||
double c = rhs.getReal();
|
||||
double d = rhs.getImaginary();
|
||||
if (c == 0.0 && d == 0.0) {
|
||||
throw new ArithmeticException("Error: division by zero.");
|
||||
}
|
||||
|
||||
if (Math.abs(c) < Math.abs(d)) {
|
||||
if (d == 0.0) {
|
||||
return new Complex(real/c, imaginary/c);
|
||||
}
|
||||
double q = c / d;
|
||||
double denominator = c * q + d;
|
||||
return new Complex((real * q + imaginary) / denominator,
|
||||
(imaginary * q - real) / denominator);
|
||||
} else {
|
||||
double q = rhs.getImaginary() / rhs.getReal();
|
||||
double d = (rhs.getImaginary() * q) + rhs.getReal();
|
||||
return new Complex(((imaginary * q) + real) / d,
|
||||
(imaginary - (real * q)) / d);
|
||||
if (c == 0.0) {
|
||||
return new Complex(imaginary/d, -real/c);
|
||||
}
|
||||
double q = d / c;
|
||||
double denominator = d * q + c;
|
||||
return new Complex((imaginary * q + real) / denominator,
|
||||
(imaginary - real * q) / denominator);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -215,15 +239,6 @@ public class Complex implements Serializable {
|
|||
return new Complex(-real, -imaginary);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the sum of the squared terms.
|
||||
*
|
||||
* @return the square sum.
|
||||
*/
|
||||
private double squareSum() {
|
||||
return real * real + imaginary * imaginary;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the difference between this complex number and the given complex
|
||||
* number.
|
||||
|
|
|
@ -18,7 +18,6 @@ package org.apache.commons.math.distribution;
|
|||
|
||||
import java.io.Serializable;
|
||||
|
||||
import org.apache.commons.math.MathException;
|
||||
import org.apache.commons.math.util.MathUtils;
|
||||
|
||||
/**
|
||||
|
@ -54,7 +53,8 @@ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
|
|||
super();
|
||||
if (numberOfSuccesses > populationSize) {
|
||||
throw new IllegalArgumentException(
|
||||
"number of successes must be less than or equal to population size");
|
||||
"number of successes must be less than or equal to " +
|
||||
"population size");
|
||||
}
|
||||
if (sampleSize > populationSize) {
|
||||
throw new IllegalArgumentException(
|
||||
|
@ -69,10 +69,8 @@ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
|
|||
* For this disbution, X, this method returns P(X ≤ x).
|
||||
* @param x the value at which the PDF is evaluated.
|
||||
* @return PDF for this distribution.
|
||||
* @throws MathException if the cumulative probability can not be
|
||||
* computed due to convergence or other numerical errors.
|
||||
*/
|
||||
public double cumulativeProbability(int x) throws MathException{
|
||||
public double cumulativeProbability(int x) {
|
||||
double ret;
|
||||
|
||||
int n = getPopulationSize();
|
||||
|
@ -84,11 +82,10 @@ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
|
|||
ret = 0.0;
|
||||
} else if(x >= domain[1]) {
|
||||
ret = 1.0;
|
||||
} else if (x - domain[0] < domain[1] - x) {
|
||||
ret = lowerCumulativeProbability(domain[0], x, n, m, k);
|
||||
} else {
|
||||
ret = 0.0;
|
||||
for (int i = domain[0]; i <= x; ++i){
|
||||
ret += probability(n, m, k, i);
|
||||
}
|
||||
ret = 1.0 - upperCumulativeProbability(x + 1, domain[1], n, m, k);
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
@ -181,6 +178,28 @@ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
|
|||
return Math.min(k, m);
|
||||
}
|
||||
|
||||
/**
|
||||
* For this disbution, X, this method returns P(x0 ≤ X ≤ x1). This
|
||||
* probability is computed by summing the point probabilities for the values
|
||||
* x0, x0 + 1, x0 + 2, ..., x1, in that order.
|
||||
* @param x0 the inclusive, lower bound
|
||||
* @param x1 the inclusive, upper bound
|
||||
* @param n the population size.
|
||||
* @param m number of successes in the population.
|
||||
* @param k the sample size.
|
||||
* @return P(x0 ≤ X ≤ x1).
|
||||
*/
|
||||
private double lowerCumulativeProbability(
|
||||
int x0, int x1, int n, int m, int k)
|
||||
{
|
||||
double ret;
|
||||
ret = 0.0;
|
||||
for (int i = x0; i <= x1; ++i) {
|
||||
ret += probability(n, m, k, i);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* For this disbution, X, this method returns P(X = x).
|
||||
*
|
||||
|
@ -203,7 +222,7 @@ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
|
|||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* For the disbution, X, defined by the given hypergeometric distribution
|
||||
* parameters, this method returns P(X = x).
|
||||
|
@ -219,7 +238,7 @@ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
|
|||
MathUtils.binomialCoefficientLog(n - m, k - x) -
|
||||
MathUtils.binomialCoefficientLog(n, k));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Modify the number of successes.
|
||||
* @param num the new number of successes.
|
||||
|
@ -245,8 +264,8 @@ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
|
|||
}
|
||||
populationSize = size;
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
/**
|
||||
* Modify the sample size.
|
||||
* @param size the new sample size.
|
||||
* @throws IllegalArgumentException if <code>size</code> is negative.
|
||||
|
@ -258,4 +277,52 @@ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution
|
|||
}
|
||||
sampleSize = size;
|
||||
}
|
||||
|
||||
/**
|
||||
* For this disbution, X, this method returns P(X ≥ x).
|
||||
* @param x the value at which the CDF is evaluated.
|
||||
* @return upper tail CDF for this distribution.
|
||||
*/
|
||||
public double upperCumulativeProbability(int x) {
|
||||
double ret;
|
||||
|
||||
int n = getPopulationSize();
|
||||
int m = getNumberOfSuccesses();
|
||||
int k = getSampleSize();
|
||||
|
||||
int[] domain = getDomain(n, m, k);
|
||||
if (x < domain[0]) {
|
||||
ret = 1.0;
|
||||
} else if(x >= domain[1]) {
|
||||
ret = 0.0;
|
||||
} else if (x - domain[0] < domain[1] - x) {
|
||||
ret = 1.0 - lowerCumulativeProbability(domain[0], x - 1, n, m, k);
|
||||
} else {
|
||||
ret = upperCumulativeProbability(x, domain[1], n, m, k);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* For this disbution, X, this method returns P(x0 ≤ X ≤ x1). This
|
||||
* probability is computed by summing the point probabilities for the values
|
||||
* x1, x1 - 1, x1 - 2, ..., x0, in that order.
|
||||
* @param x0 the inclusive, lower bound
|
||||
* @param x1 the inclusive, upper bound
|
||||
* @param n the population size.
|
||||
* @param m number of successes in the population.
|
||||
* @param k the sample size.
|
||||
* @return P(x0 ≤ X ≤ x1).
|
||||
*/
|
||||
private double upperCumulativeProbability(
|
||||
int x0, int x1, int n, int m, int k)
|
||||
{
|
||||
double ret = 0.0;
|
||||
for (int i = x1; i >= x0; --i) {
|
||||
ret += probability(n, m, k, i);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -155,7 +155,7 @@ public class Gamma implements Serializable {
|
|||
ret = Double.NaN;
|
||||
} else if (x == 0.0) {
|
||||
ret = 0.0;
|
||||
} else if (a > 1.0 && x > a) {
|
||||
} else if (a >= 1.0 && x > a) {
|
||||
// use regularizedGammaQ because it should converge faster in this
|
||||
// case.
|
||||
ret = 1.0 - regularizedGammaQ(a, x, epsilon, maxIterations);
|
||||
|
@ -231,7 +231,7 @@ public class Gamma implements Serializable {
|
|||
ret = Double.NaN;
|
||||
} else if (x == 0.0) {
|
||||
ret = 1.0;
|
||||
} else if (x < a || a <= 1.0) {
|
||||
} else if (x < a || a < 1.0) {
|
||||
// use regularizedGammaP because it should converge faster in this
|
||||
// case.
|
||||
ret = 1.0 - regularizedGammaP(a, x, epsilon, maxIterations);
|
||||
|
|
|
@ -604,8 +604,8 @@ public final class StatUtils {
|
|||
double sum2 = 0d;
|
||||
double diff = 0d;
|
||||
int n = sample1.length;
|
||||
if (n < 2) {
|
||||
throw new IllegalArgumentException("Input array lengths must be at least 2.");
|
||||
if (n < 2 || n != sample2.length) {
|
||||
throw new IllegalArgumentException("Input array lengths must be equal and at least 2.");
|
||||
}
|
||||
for (int i = 0; i < n; i++) {
|
||||
diff = sample1[i] - sample2[i];
|
||||
|
|
|
@ -100,16 +100,25 @@ public abstract class ContinuedFraction implements Serializable {
|
|||
}
|
||||
|
||||
/**
|
||||
* <p>
|
||||
* Evaluates the continued fraction at the value x.
|
||||
* </p>
|
||||
*
|
||||
* The implementation of this method is based on:
|
||||
* <p>
|
||||
* The implementation of this method is based on equations 14-17 of:
|
||||
* <ul>
|
||||
* <li>O. E-gecio-glu, C . K. Koc, J. Rifa i Coma,
|
||||
* <a href="http://citeseer.ist.psu.edu/egecioglu91fast.html">
|
||||
* On Fast Computation of Continued Fractions</a>, Computers Math. Applic.,
|
||||
* 21(2--3), 1991, 167--169.</li>
|
||||
* <li>
|
||||
* Eric W. Weisstein. "Continued Fraction." From MathWorld--A Wolfram Web
|
||||
* Resource. <a target="_blank"
|
||||
* href="http://mathworld.wolfram.com/ContinuedFraction.html">
|
||||
* http://mathworld.wolfram.com/ContinuedFraction.html</a>
|
||||
* </li>
|
||||
* </ul>
|
||||
*
|
||||
* The recurrence relationship defined in those equations can result in
|
||||
* very large intermediate results which can result in numerical overflow.
|
||||
* As a means to combat these overflow conditions, the intermediate results
|
||||
* are scaled whenever they threaten to become numerically unstable.
|
||||
*
|
||||
* @param x the evaluation point.
|
||||
* @param epsilon maximum error allowed.
|
||||
* @param maxIterations maximum number of convergents
|
||||
|
@ -119,72 +128,50 @@ public abstract class ContinuedFraction implements Serializable {
|
|||
public double evaluate(double x, double epsilon, int maxIterations)
|
||||
throws MathException
|
||||
{
|
||||
double[][] f = new double[2][2];
|
||||
double[][] a = new double[2][2];
|
||||
double[][] an = new double[2][2];
|
||||
double p0 = 1.0;
|
||||
double p1 = getA(0, x);
|
||||
double q0 = 0.0;
|
||||
double q1 = 1.0;
|
||||
double c = p1 / q1;
|
||||
int n = 0;
|
||||
double relativeError = Double.MAX_VALUE;
|
||||
while (n < maxIterations && relativeError > epsilon) {
|
||||
++n;
|
||||
double a = getA(n, x);
|
||||
double b = getB(n, x);
|
||||
double p2 = a * p1 + b * p0;
|
||||
double q2 = a * q1 + b * q0;
|
||||
if (Double.isInfinite(p2) || Double.isInfinite(q2)) {
|
||||
// need to scale
|
||||
if (a != 0.0) {
|
||||
p2 = p1 + (b / a * p0);
|
||||
q2 = q1 + (b / a * q0);
|
||||
} else if (b != 0) {
|
||||
p2 = (a / b * p1) + p0;
|
||||
q2 = (a / b * q1) + q0;
|
||||
} else {
|
||||
// can not scale an convergent is unbounded.
|
||||
throw new ConvergenceException(
|
||||
"Continued fraction convergents diverged to +/- " +
|
||||
"infinity.");
|
||||
}
|
||||
}
|
||||
double r = p2 / q2;
|
||||
relativeError = Math.abs(r / c - 1.0);
|
||||
|
||||
// prepare for next iteration
|
||||
c = p2 / q2;
|
||||
p0 = p1;
|
||||
p1 = p2;
|
||||
q0 = q1;
|
||||
q1 = q2;
|
||||
}
|
||||
|
||||
a[0][0] = getA(0, x);
|
||||
a[0][1] = 1.0;
|
||||
a[1][0] = 1.0;
|
||||
a[1][1] = 0.0;
|
||||
|
||||
return evaluate(1, x, a, an, f, epsilon, maxIterations);
|
||||
}
|
||||
|
||||
/**
|
||||
* Evaluates the n-th convergent, fn = pn / qn, for this continued fraction
|
||||
* at the value x.
|
||||
* @param n the convergent to compute.
|
||||
* @param x the evaluation point.
|
||||
* @param a (n-1)-th convergent matrix. (Input)
|
||||
* @param an the n-th coefficient matrix. (Output)
|
||||
* @param f the n-th convergent matrix. (Output)
|
||||
* @param epsilon maximum error allowed.
|
||||
* @param maxIterations maximum number of convergents
|
||||
* @return the value of the the n-th convergent for this continued fraction
|
||||
* evaluated at x.
|
||||
* @throws MathException if the algorithm fails to converge.
|
||||
*/
|
||||
private double evaluate(
|
||||
int n,
|
||||
double x,
|
||||
double[][] a,
|
||||
double[][] an,
|
||||
double[][] f,
|
||||
double epsilon,
|
||||
int maxIterations) throws MathException
|
||||
{
|
||||
double ret;
|
||||
|
||||
// create next matrix
|
||||
an[0][0] = getA(n, x);
|
||||
an[0][1] = 1.0;
|
||||
an[1][0] = getB(n, x);
|
||||
an[1][1] = 0.0;
|
||||
|
||||
// multiply a and an, save as f
|
||||
f[0][0] = (a[0][0] * an[0][0]) + (a[0][1] * an[1][0]);
|
||||
f[0][1] = (a[0][0] * an[0][1]) + (a[0][1] * an[1][1]);
|
||||
f[1][0] = (a[1][0] * an[0][0]) + (a[1][1] * an[1][0]);
|
||||
f[1][1] = (a[1][0] * an[0][1]) + (a[1][1] * an[1][1]);
|
||||
|
||||
// determine if we're close enough
|
||||
if (Math.abs((f[0][0] * f[1][1]) - (f[1][0] * f[0][1])) <
|
||||
Math.abs(epsilon * f[1][0] * f[1][1]))
|
||||
{
|
||||
ret = f[0][0] / f[1][0];
|
||||
} else {
|
||||
if (n >= maxIterations) {
|
||||
throw new ConvergenceException(
|
||||
"Continued fraction convergents failed to converge.");
|
||||
}
|
||||
// compute next
|
||||
ret = evaluate(n + 1, x, f /* new a */
|
||||
, an /* reuse an */
|
||||
, a /* new f */
|
||||
, epsilon, maxIterations);
|
||||
if (n >= maxIterations) {
|
||||
throw new ConvergenceException(
|
||||
"Continued fraction convergents failed to converge.");
|
||||
}
|
||||
|
||||
return ret;
|
||||
return c;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,12 +1,17 @@
|
|||
/*
|
||||
* Copyright 2003-2005 The Apache Software Foundation. Licensed under the Apache
|
||||
* License, Version 2.0 (the "License"); you may not use this file except in
|
||||
* compliance with the License. You may obtain a copy of the License at
|
||||
* http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law
|
||||
* or agreed to in writing, software distributed under the License is
|
||||
* distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the specific language
|
||||
* governing permissions and limitations under the License.
|
||||
* Copyright 2003-2004 The Apache Software Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math.util;
|
||||
|
@ -15,9 +20,7 @@ import java.math.BigDecimal;
|
|||
|
||||
/**
|
||||
* Some useful additions to the built-in functions in {@link Math}.
|
||||
*
|
||||
* @version $Revision$ $Date: 2005-07-30 02:25:26 -0500 (Sat, 30 Jul
|
||||
* 2005) $
|
||||
* @version $Revision$ $Date$
|
||||
*/
|
||||
public final class MathUtils {
|
||||
|
||||
|
@ -496,7 +499,7 @@ public final class MathUtils {
|
|||
* @since 1.1
|
||||
*/
|
||||
public static double round(double x, int scale, int roundingMethod) {
|
||||
double sign = sign(x);
|
||||
double sign = indicator(x);
|
||||
double factor = Math.pow(10.0, scale) * sign;
|
||||
return roundUnscaled(x * factor, sign, roundingMethod) / factor;
|
||||
}
|
||||
|
@ -527,7 +530,7 @@ public final class MathUtils {
|
|||
* @since 1.1
|
||||
*/
|
||||
public static float round(float x, int scale, int roundingMethod) {
|
||||
float sign = sign(x);
|
||||
float sign = indicator(x);
|
||||
float factor = (float)Math.pow(10.0f, scale) * sign;
|
||||
return (float)roundUnscaled(x * factor, sign, roundingMethod) / factor;
|
||||
}
|
||||
|
|
|
@ -15,6 +15,8 @@
|
|||
*/
|
||||
package org.apache.commons.math.distribution;
|
||||
|
||||
import org.apache.commons.math.MathException;
|
||||
|
||||
/**
|
||||
* <code>PoissonDistributionTest</code>
|
||||
*
|
||||
|
@ -133,4 +135,46 @@ public class PoissonDistributionTest extends IntegerDistributionAbstractTest {
|
|||
dist.setMean(10.0);
|
||||
assertEquals(10.0, dist.getMean(), 0.0);
|
||||
}
|
||||
|
||||
public void testLargeMeanCumulativeProbability() {
|
||||
PoissonDistribution dist = DistributionFactory.newInstance().createPoissonDistribution(1.0);
|
||||
double mean = 1.0;
|
||||
while (mean <= 10000000.0) {
|
||||
dist.setMean(mean);
|
||||
|
||||
double x = mean * 2.0;
|
||||
double dx = x / 10.0;
|
||||
while (x >= 0) {
|
||||
try {
|
||||
dist.cumulativeProbability(x);
|
||||
} catch (MathException ex) {
|
||||
fail("mean of " + mean + " and x of " + x + " caused " + ex.getMessage());
|
||||
}
|
||||
x -= dx;
|
||||
}
|
||||
|
||||
mean *= 10.0;
|
||||
}
|
||||
}
|
||||
|
||||
public void testLargeMeanInverseCumulativeProbability() {
|
||||
PoissonDistribution dist = DistributionFactory.newInstance().createPoissonDistribution(1.0);
|
||||
double mean = 1.0;
|
||||
while (mean <= 10000000.0) {
|
||||
dist.setMean(mean);
|
||||
|
||||
double p = 0.1;
|
||||
double dp = p;
|
||||
while (p < 1.0) {
|
||||
try {
|
||||
dist.inverseCumulativeProbability(p);
|
||||
} catch (MathException ex) {
|
||||
fail("mean of " + mean + " and p of " + p + " caused " + ex.getMessage());
|
||||
}
|
||||
p += dp;
|
||||
}
|
||||
|
||||
mean *= 10.0;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -422,6 +422,11 @@ public final class RealMatrixImplTest extends TestCase {
|
|||
RealMatrix lu = m.getLUMatrix();
|
||||
assertClose("LU decomposition", lu, (RealMatrix) new RealMatrixImpl(testDataLU), normTolerance);
|
||||
verifyDecomposition(m, lu);
|
||||
// access LU decomposition on same object to verify caching.
|
||||
lu = m.getLUMatrix();
|
||||
assertClose("LU decomposition", lu, (RealMatrix) new RealMatrixImpl(testDataLU), normTolerance);
|
||||
verifyDecomposition(m, lu);
|
||||
|
||||
m = new RealMatrixImpl(luData);
|
||||
lu = m.getLUMatrix();
|
||||
assertClose("LU decomposition", lu, (RealMatrix) new RealMatrixImpl(luDataLUDecomposition), normTolerance);
|
||||
|
@ -642,6 +647,19 @@ public final class RealMatrixImplTest extends TestCase {
|
|||
} catch (MatrixIndexException e) {
|
||||
// expected
|
||||
}
|
||||
// dimension underflow
|
||||
try {
|
||||
m.setSubMatrix(testData,-1,1);
|
||||
fail("expecting MatrixIndexException");
|
||||
} catch (MatrixIndexException e) {
|
||||
// expected
|
||||
}
|
||||
try {
|
||||
m.setSubMatrix(testData,1,-1);
|
||||
fail("expecting MatrixIndexException");
|
||||
} catch (MatrixIndexException e) {
|
||||
// expected
|
||||
}
|
||||
|
||||
// null
|
||||
try {
|
||||
|
|
|
@ -20,6 +20,8 @@ import java.io.IOException;
|
|||
import java.io.StringReader;
|
||||
import java.util.Iterator;
|
||||
|
||||
import org.apache.commons.math.TestUtils;
|
||||
|
||||
import junit.framework.Test;
|
||||
import junit.framework.TestCase;
|
||||
import junit.framework.TestSuite;
|
||||
|
@ -111,6 +113,21 @@ public final class FrequencyTest extends TestCase {
|
|||
assertEquals("one count", 3 , f.getCount("one"));
|
||||
assertEquals("Z cumulative pct -- case insensitive", 1 , f.getCumPct("Z"), tolerance);
|
||||
assertEquals("z cumulative pct -- case insensitive", 1 , f.getCumPct("z"), tolerance);
|
||||
|
||||
f = null;
|
||||
f = new Frequency();
|
||||
assertEquals(0L, f.getCount('a'));
|
||||
assertEquals(0L, f.getCumFreq('b'));
|
||||
TestUtils.assertEquals(Double.NaN, f.getPct('a'), 0.0);
|
||||
TestUtils.assertEquals(Double.NaN, f.getCumPct('b'), 0.0);
|
||||
f.addValue('a');
|
||||
f.addValue('b');
|
||||
f.addValue('c');
|
||||
f.addValue('d');
|
||||
assertEquals(1L, f.getCount('a'));
|
||||
assertEquals(2L, f.getCumFreq('b'));
|
||||
assertEquals(0.25, f.getPct('a'), 0.0);
|
||||
assertEquals(0.5, f.getCumPct('b'), 0.0);
|
||||
}
|
||||
|
||||
/** test pcts */
|
||||
|
|
|
@ -371,6 +371,19 @@ public final class StatUtilsTest extends TestCase {
|
|||
} catch (IllegalArgumentException ex) {
|
||||
// expected
|
||||
}
|
||||
try {
|
||||
StatUtils.varianceDifference(sample1, small, meanDifference);
|
||||
fail("Expecting IllegalArgumentException");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
// expected
|
||||
}
|
||||
try {
|
||||
double[] single = {1.0};
|
||||
StatUtils.varianceDifference(single, single, meanDifference);
|
||||
fail("Expecting IllegalArgumentException");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
// expected
|
||||
}
|
||||
}
|
||||
|
||||
public void testGeometricMean() throws Exception {
|
||||
|
@ -384,5 +397,7 @@ public final class StatUtilsTest extends TestCase {
|
|||
test = new double[] {2, 4, 6, 8};
|
||||
assertEquals(Math.exp(0.25d * StatUtils.sumLog(test)),
|
||||
StatUtils.geometricMean(test), Double.MIN_VALUE);
|
||||
assertEquals(Math.exp(0.5 * StatUtils.sumLog(test, 0, 2)),
|
||||
StatUtils.geometricMean(test, 0, 2), Double.MIN_VALUE);
|
||||
}
|
||||
}
|
|
@ -72,6 +72,20 @@ public class PercentileTest extends UnivariateStatisticAbstractTest{
|
|||
assertEquals(3.75, p.evaluate(d), 1.0e-5);
|
||||
p.setQuantile(50);
|
||||
assertEquals(2.5, p.evaluate(d), 1.0e-5);
|
||||
|
||||
// invalid percentiles
|
||||
try {
|
||||
p.evaluate(d, 0, d.length, -1.0);
|
||||
fail();
|
||||
} catch (IllegalArgumentException ex) {
|
||||
// success
|
||||
}
|
||||
try {
|
||||
p.evaluate(d, 0, d.length, 101.0);
|
||||
fail();
|
||||
} catch (IllegalArgumentException ex) {
|
||||
// success
|
||||
}
|
||||
}
|
||||
|
||||
public void testNISTExample() {
|
||||
|
|
|
@ -17,6 +17,8 @@ package org.apache.commons.math.util;
|
|||
|
||||
import java.math.BigDecimal;
|
||||
|
||||
import org.apache.commons.math.TestUtils;
|
||||
|
||||
import junit.framework.Test;
|
||||
import junit.framework.TestCase;
|
||||
import junit.framework.TestSuite;
|
||||
|
@ -556,6 +558,12 @@ public final class MathUtilsTest extends TestCase {
|
|||
} catch (IllegalArgumentException ex) {
|
||||
// success
|
||||
}
|
||||
|
||||
// special values
|
||||
TestUtils.assertEquals(Float.NaN, MathUtils.round(Float.NaN, 2), 0.0f);
|
||||
assertEquals(0.0f, MathUtils.round(0.0f, 2), 0.0f);
|
||||
assertEquals(Float.POSITIVE_INFINITY, MathUtils.round(Float.POSITIVE_INFINITY, 2), 0.0f);
|
||||
assertEquals(Float.NEGATIVE_INFINITY, MathUtils.round(Float.NEGATIVE_INFINITY, 2), 0.0f);
|
||||
}
|
||||
|
||||
public void testRoundDouble() {
|
||||
|
@ -646,5 +654,11 @@ public final class MathUtilsTest extends TestCase {
|
|||
} catch (IllegalArgumentException ex) {
|
||||
// success
|
||||
}
|
||||
|
||||
// special values
|
||||
TestUtils.assertEquals(Double.NaN, MathUtils.round(Double.NaN, 2), 0.0);
|
||||
assertEquals(0.0, MathUtils.round(0.0, 2), 0.0);
|
||||
assertEquals(Double.POSITIVE_INFINITY, MathUtils.round(Double.POSITIVE_INFINITY, 2), 0.0);
|
||||
assertEquals(Double.NEGATIVE_INFINITY, MathUtils.round(Double.NEGATIVE_INFINITY, 2), 0.0);
|
||||
}
|
||||
}
|
|
@ -50,6 +50,20 @@ Commons Math Release Notes</title>
|
|||
and numerical utilities, and a PRNG pluggability framework making it
|
||||
possible to replace the JDK-supplied random number generator in
|
||||
commons-math (and elsewhere) with alternative PRNG implementations.">
|
||||
<action dev="brentworden" type="fix" issue="36300" due-to="Nikhil Gupte">
|
||||
Fixed division by zero error in rounding methods.
|
||||
</action>
|
||||
<action dev="brentworden" type="fix" issue="36215" due-to="Mike Hu">
|
||||
Added upper tail cumulative probability method to HypergeometricDistributionImpl.
|
||||
</action>
|
||||
<action dev="brentworden" type="fix" issue="36205" due-to="Xiaogang Zhang">
|
||||
Added better handling of numerical overflow and division by zero in
|
||||
Complex calculations.
|
||||
</action>
|
||||
<action dev="brentworden" type="fix" issue="36105" due-to="Mikael Weigelt">
|
||||
Changed ContinuedFraction to better handle infinite convergents that
|
||||
resulted in divergent continued fraction evaluations.
|
||||
</action>
|
||||
<action dev="brentworden" type="fix" issue="35904" due-to="Srinivas Vemury">
|
||||
Changed rounding methods to not rely on BigDecimal conversions which
|
||||
was causing numerical error.
|
||||
|
|
Loading…
Reference in New Issue