[MATH-892] Add new ctor to SpearmansCorrelation, reordering of ctors.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1407847 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
a170601629
commit
ff96ac9292
|
@ -52,6 +52,10 @@ If the output is not quite correct, check for invisible trailing spaces!
|
||||||
<body>
|
<body>
|
||||||
<release version="3.1" date="TBD" description="
|
<release version="3.1" date="TBD" description="
|
||||||
">
|
">
|
||||||
|
<action dev="tn" type="add" issue="MATH-892">
|
||||||
|
Add new constructor to "SpearmansCorrelation" class which allows to specify the
|
||||||
|
"RankingAlgorithm" to be used.
|
||||||
|
</action>
|
||||||
<action dev="luc" type="fix" issue="MATH-890">
|
<action dev="luc" type="fix" issue="MATH-890">
|
||||||
Fixed naming inconsistencies between Interval and IntervalsSet classes.
|
Fixed naming inconsistencies between Interval and IntervalsSet classes.
|
||||||
</action>
|
</action>
|
||||||
|
|
|
@ -50,18 +50,21 @@ public class SpearmansCorrelation {
|
||||||
private final PearsonsCorrelation rankCorrelation;
|
private final PearsonsCorrelation rankCorrelation;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create a SpearmansCorrelation with the given input data matrix
|
* Create a SpearmansCorrelation without data.
|
||||||
* and ranking algorithm.
|
*/
|
||||||
|
public SpearmansCorrelation() {
|
||||||
|
this(new NaturalRanking());
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a SpearmansCorrelation with the given ranking algorithm.
|
||||||
*
|
*
|
||||||
* @param dataMatrix matrix of data with columns representing
|
|
||||||
* variables to correlate
|
|
||||||
* @param rankingAlgorithm ranking algorithm
|
* @param rankingAlgorithm ranking algorithm
|
||||||
*/
|
*/
|
||||||
public SpearmansCorrelation(final RealMatrix dataMatrix, final RankingAlgorithm rankingAlgorithm) {
|
public SpearmansCorrelation(final RankingAlgorithm rankingAlgorithm) {
|
||||||
this.data = dataMatrix.copy();
|
data = null;
|
||||||
this.rankingAlgorithm = rankingAlgorithm;
|
this.rankingAlgorithm = rankingAlgorithm;
|
||||||
rankTransform(data);
|
rankCorrelation = null;
|
||||||
rankCorrelation = new PearsonsCorrelation(data);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -75,12 +78,18 @@ public class SpearmansCorrelation {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create a SpearmansCorrelation without data.
|
* Create a SpearmansCorrelation with the given input data matrix
|
||||||
|
* and ranking algorithm.
|
||||||
|
*
|
||||||
|
* @param dataMatrix matrix of data with columns representing
|
||||||
|
* variables to correlate
|
||||||
|
* @param rankingAlgorithm ranking algorithm
|
||||||
*/
|
*/
|
||||||
public SpearmansCorrelation() {
|
public SpearmansCorrelation(final RealMatrix dataMatrix, final RankingAlgorithm rankingAlgorithm) {
|
||||||
data = null;
|
this.data = dataMatrix.copy();
|
||||||
this.rankingAlgorithm = new NaturalRanking();
|
this.rankingAlgorithm = rankingAlgorithm;
|
||||||
rankCorrelation = null;
|
rankTransform(data);
|
||||||
|
rankCorrelation = new PearsonsCorrelation(data);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
Loading…
Reference in New Issue