2013-09-16 17:49:36 -04:00
---
2013-09-26 19:22:28 -04:00
layout: doc_page
2013-09-16 17:49:36 -04:00
---
2013-09-13 18:20:39 -04:00
These types of queries take a groupBy query object and return an array of JSON objects where each object represents a grouping asked for by the query.
An example groupBy query object is shown below:
< pre >
< code >
{
[queryType]() “groupBy”,
[dataSource]() “sample\_datasource”,
[granularity]() “day”,
[dimensions]() [“dim1”, “dim2”],
[limitSpec]() {
2013-09-26 19:22:28 -04:00
[type]() “doc_page”,
2013-09-13 18:20:39 -04:00
[limit]() 5000,
[columns]() [“dim1”, “metric1”]
},
[filter]() {
[type]() “and”,
[fields]() [
{
[type]() “selector”,
[dimension]() “sample\_dimension1”,
[value]() “sample\_value1”
},
{
[type]() “or”,
[fields]() [
{
[type]() “selector”,
[dimension]() “sample\_dimension2”,
[value]() “sample\_value2”
},
{
[type]() “selector”,
[dimension]() “sample\_dimension3”,
[value]() “sample\_value3”
}
]
}
]
},
[aggregations]() [
{
[type]() “longSum”,
[name]() “sample\_name1”,
[fieldName]() “sample\_fieldName1”
},
{
[type]() “doubleSum”,
[name]() “sample\_name2”,
[fieldName]() “sample\_fieldName2”
}
],
[postAggregations]() [
{
[type]() “arithmetic”,
[name]() “sample\_divide”,
[fn]() “/”,
[fields]() [
{
[type]() “fieldAccess”,
[name]() “sample\_name1”,
[fieldName]() “sample\_fieldName1”
},
{
[type]() “fieldAccess”,
[name]() “sample\_name2”,
[fieldName]() “sample\_fieldName2”
}
]
}
],
[intervals]() [
“2012-01-01T00:00:00.000/2012-01-03T00:00:00.000”
],
[having]() {
[type]() “greaterThan”,
[aggregation]() “sample\_name1”,
[value]() 0
}
}
< / pre >
< / code >
There are 9 main parts to a groupBy query:
|property|description|required?|
|--------|-----------|---------|
|queryType|This String should always be “groupBy”; this is the first thing Druid looks at to figure out how to interpret the query|yes|
|dataSource|A String defining the data source to query, very similar to a table in a relational database|yes|
|dimensions|A JSON list of dimensions to do the groupBy over|yes|
2013-09-16 19:01:14 -04:00
|orderBy|See [OrderBy ](OrderBy.html ).|no|
|having|See [Having ](Having.html ).|no|
|granularity|Defines the granularity of the query. See [Granularities ](Granularities.html )|yes|
|filter|See [Filters ](Filters.html )|no|
|aggregations|See [Aggregations ](Aggregations.html )|yes|
2013-09-16 19:19:49 -04:00
|postAggregations|See [Post Aggregations ](Post-Aggregations.html )|no|
2013-09-13 18:20:39 -04:00
|intervals|A JSON Object representing ISO-8601 Intervals. This defines the time ranges to run the query over.|yes|
|context|An additional JSON Object which can be used to specify certain flags.|no|
To pull it all together, the above query would return *n\*m* data points, up to a maximum of 5000 points, where n is the cardinality of the “dim1” dimension, m is the cardinality of the “dim2” dimension, each day between 2012-01-01 and 2012-01-03, from the “sample\_datasource” table. Each data point contains the (long) sum of sample\_fieldName1 if the value of the data point is greater than 0, the (double) sum of sample\_fieldName2 and the (double) the result of sample\_fieldName1 divided by sample\_fieldName2 for the filter set for a particular grouping of “dim1” and “dim2”. The output looks like this:
< pre >
< code >
[ {
“version” : “v1”,
“timestamp” : “2012-01-01T00:00:00.000Z”,
“event” : {
“dim1” : < some_dim1_value > ,
“dim2” : < some_dim2_value > ,
“sample\_name1” : < some_sample_name1_value > ,
“sample\_name2” :< some_sample_name2_value > ,
“sample\_divide” : < some_sample_divide_value >
}
}, {
“version” : “v1”,
“timestamp” : “2012-01-01T00:00:00.000Z”,
“event” : {
“dim1” : < some_other_dim1_value > ,
“dim2” : < some_other_dim2_value > ,
“sample\_name1” : < some_other_sample_name1_value > ,
“sample\_name2” :< some_other_sample_name2_value > ,
“sample\_divide” : < some_other_sample_divide_value >
}
},
…
]
< / pre >
< / code >