The Index Task is a simpler variation of the Index Hadoop task that is designed to be used for smaller data sets. The task executes within the indexing service and does not require an external Hadoop setup to use. The grammar of the index task is as follows:
|numShards|Directly specify the number of shards to create. You can skip the intermediate persist step if you specify the number of shards you want and set targetPartitionSize=-1.|null|no|
|bitmap|type of bitmap compression to use for inverted indices.|`"concise"`, `"roaring"`|`"concise"` or the value of `druid.processing.bitmap.type`, if specified|no|
|dimensionCompression|compression format for dimension columns (currently only affects single-value dimensions, multi-value dimensions are always uncompressed)|`"uncompressed"`, `"lz4"`, `"lzf"`|`"lz4"`|no|
|metricCompression|compression format for metric columns, defaults to LZ4|`"lz4"`, `"lzf"`|`"lz4"`|no|
The Hadoop Index Config submitted as part of an Hadoop Index Task is identical to the Hadoop Index Config used by the `HadoopBatchIndexer` except that three fields must be omitted: `segmentOutputPath`, `workingPath`, `updaterJobSpec`. The Indexing Service takes care of setting these fields internally.
Druid is compiled against Apache hadoop-client 2.3.0. However, if you happen to use a different flavor of hadoop that is API compatible with hadoop-client 2.3.0, you should only have to change the hadoopCoordinates property to point to the maven artifact used by your distribution. For non-API compatible versions, please see [here](Other-Hadoop.html).
Currently, the HadoopIndexTask creates a single classpath to run the HadoopDruidIndexerJob, which can lead to version conflicts between various dependencies of Druid, extension modules, and Hadoop's own dependencies.
The Hadoop index task will put Druid's dependencies first on the classpath, followed by any extensions dependencies, and any Hadoop dependencies last.
If you are having trouble with any extensions in HadoopIndexTask, it may be the case that Druid, or one of its dependencies, depends on a different version of a library than what you are using as part of your extensions, but Druid's version overrides the one in your extension. In that case you probably want to build your own Druid version and override the offending library by adding an explicit dependency to the pom.xml of each druid sub-module that depends on it.
The indexing service can also run real-time tasks. These tasks effectively transform a middle manager into a real-time node. We introduced real-time tasks as a way to programmatically add new real-time data sources without needing to manually add nodes. We recommend you use the library [tranquility](https://github.com/metamx/tranquility) to programmatically manage generating real-time index tasks. The grammar for the real-time task is as follows:
|availabilityGroup|String|An uniqueness identifier for the task. Tasks with the same availability group will always run on different middle managers. Used mainly for replication. |yes|
|requiredCapacity|Integer|How much middle manager capacity this task will take.|yes|
For schema, windowPeriod, segmentGranularity, and other configuration information, see [Realtime Ingestion](Realtime-ingestion.html). For firehose configuration, see [Firehose](Firehose.html).
Kill tasks delete all information about a segment and removes it from deep storage. Killable segments must be disabled (used==0) in the Druid segment table. The available grammar is:
Once an overlord node accepts a task, a lock is created for the data source and interval specified in the task. Tasks do not need to explicitly release locks, they are released upon task completion. Tasks may potentially release locks early if they desire. Tasks ids are unique by naming them using UUIDs or the timestamp in which the task was created. Tasks are also part of a "task group", which is a set of tasks that can share interval locks.