druid/docs/content/querying/aggregations.md

388 lines
11 KiB
Markdown
Raw Normal View History

---
layout: doc_page
---
# Aggregations
2015-12-31 19:32:51 -05:00
Aggregations can be provided at ingestion time as part of the ingestion spec as a way of summarizing data before it enters Druid.
Aggregations can also be specified as part of many queries at query time.
Available aggregations are:
### Count aggregator
2015-12-31 19:32:51 -05:00
`count` computes the count of Druid rows that match the filters.
```json
{ "type" : "count", "name" : <output_name> }
```
2015-12-31 19:32:51 -05:00
Please note the count aggregator counts the number of Druid rows, which does not always reflect the number of raw events ingested.
This is because Druid can be configured to roll up data at ingestion time. To
2015-12-31 19:32:51 -05:00
count the number of ingested rows of data, include a count aggregator at ingestion time, and a longSum aggregator at
query time.
### Sum aggregators
#### `longSum` aggregator
computes the sum of values as a 64-bit, signed integer
```json
{ "type" : "longSum", "name" : <output_name>, "fieldName" : <metric_name> }
```
`name` output name for the summed value
`fieldName` name of the metric column to sum over
#### `doubleSum` aggregator
Computes and stores the sum of values as 64-bit floating point value. Similar to `longSum`
```json
{ "type" : "doubleSum", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `floatSum` aggregator
Computes and stores the sum of values as 32-bit floating point value. Similar to `longSum` and `doubleSum`
```json
{ "type" : "floatSum", "name" : <output_name>, "fieldName" : <metric_name> }
```
### Min / Max aggregators
#### `doubleMin` aggregator
`doubleMin` computes the minimum of all metric values and Double.POSITIVE_INFINITY
```json
{ "type" : "doubleMin", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `doubleMax` aggregator
`doubleMax` computes the maximum of all metric values and Double.NEGATIVE_INFINITY
```json
{ "type" : "doubleMax", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `floatMin` aggregator
`floatMin` computes the minimum of all metric values and Float.POSITIVE_INFINITY
```json
{ "type" : "floatMin", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `floatMax` aggregator
`floatMax` computes the maximum of all metric values and Float.NEGATIVE_INFINITY
```json
{ "type" : "floatMax", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `longMin` aggregator
`longMin` computes the minimum of all metric values and Long.MAX_VALUE
```json
{ "type" : "longMin", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `longMax` aggregator
`longMax` computes the maximum of all metric values and Long.MIN_VALUE
```json
{ "type" : "longMax", "name" : <output_name>, "fieldName" : <metric_name> }
```
### First / Last aggregator
Add stringLast and stringFirst aggregators extension (#5789) * Add lastString and firstString aggregators extension * Remove duplicated class * Move first-last-string doc page to extensions-contrib * Fix ObjectStrategy compare method * Fix doc bad aggregatos type name * Create FoldingAggregatorFactory classes to fix SegmentMetadataQuery * Add getMaxStringBytes() method to support JSON serialization * Fix null pointer exception at segment creation phase when the string value is null * Control the valueSelector object class on BufferAggregators * Perform all improvements * Add java doc on SerializablePairLongStringSerde * Refactor ObjectStraty compare method * Remove unused ; * Add aggregateCombiner unit tests. Rename BufferAggregators unit tests * Remove unused imports * Add license header * Add class name to java doc class serde * Throw exception if value is unsupported class type * Move first-last-string extension into druid core * Update druid core docs * Fix null pointer exception when pair->string is null * Add null control unit tests * Remove unused imports * Add first/last string folding aggregator on AggregatorsModule to support segment metadata query * Change SerializablePairLongString to extend SerializablePair * Change vars from public to private * Convert vars to primitive type * Clarify compare comment * Change IllegalStateException to ISE * Remove TODO comments * Control possible null pointer exception * Add @Nullable annotation * Remove empty line * Remove unused parameter type * Improve AggregatorCombiner javadocs * Add filterNullValues option at StringLast and StringFirst aggregators * Add filterNullValues option at agg documentation * Fix checkstyle * Update header license * Fix StringFirstAggregatorFactory.VALUE_COMPARATOR * Fix StringFirstAggregatorCombiner * Fix if condition at StringFirstAggregateCombiner * Remove filterNullValues from string first/last aggregators * Add isReset flag in FirstAggregatorCombiner * Change Arrays.asList to Collections.singletonList
2018-08-01 13:52:54 -04:00
(Double/Float/Long) First and Last aggregator cannot be used in ingestion spec, and should only be specified as part of queries.
Note that queries with first/last aggregators on a segment created with rollup enabled will return the rolled up value, and not the last value within the raw ingested data.
#### `doubleFirst` aggregator
`doubleFirst` computes the metric value with the minimum timestamp or 0 if no row exist
```json
{
"type" : "doubleFirst",
"name" : <output_name>,
"fieldName" : <metric_name>
}
```
#### `doubleLast` aggregator
`doubleLast` computes the metric value with the maximum timestamp or 0 if no row exist
```json
{
"type" : "doubleLast",
"name" : <output_name>,
"fieldName" : <metric_name>
}
```
#### `floatFirst` aggregator
`floatFirst` computes the metric value with the minimum timestamp or 0 if no row exist
```json
{
"type" : "floatFirst",
"name" : <output_name>,
"fieldName" : <metric_name>
}
```
#### `floatLast` aggregator
`floatLast` computes the metric value with the maximum timestamp or 0 if no row exist
```json
{
"type" : "floatLast",
"name" : <output_name>,
"fieldName" : <metric_name>
}
```
#### `longFirst` aggregator
`longFirst` computes the metric value with the minimum timestamp or 0 if no row exist
```json
{
"type" : "longFirst",
"name" : <output_name>,
"fieldName" : <metric_name>
}
```
#### `longLast` aggregator
`longLast` computes the metric value with the maximum timestamp or 0 if no row exist
```json
{
"type" : "longLast",
"name" : <output_name>,
"fieldName" : <metric_name>,
}
```
Add stringLast and stringFirst aggregators extension (#5789) * Add lastString and firstString aggregators extension * Remove duplicated class * Move first-last-string doc page to extensions-contrib * Fix ObjectStrategy compare method * Fix doc bad aggregatos type name * Create FoldingAggregatorFactory classes to fix SegmentMetadataQuery * Add getMaxStringBytes() method to support JSON serialization * Fix null pointer exception at segment creation phase when the string value is null * Control the valueSelector object class on BufferAggregators * Perform all improvements * Add java doc on SerializablePairLongStringSerde * Refactor ObjectStraty compare method * Remove unused ; * Add aggregateCombiner unit tests. Rename BufferAggregators unit tests * Remove unused imports * Add license header * Add class name to java doc class serde * Throw exception if value is unsupported class type * Move first-last-string extension into druid core * Update druid core docs * Fix null pointer exception when pair->string is null * Add null control unit tests * Remove unused imports * Add first/last string folding aggregator on AggregatorsModule to support segment metadata query * Change SerializablePairLongString to extend SerializablePair * Change vars from public to private * Convert vars to primitive type * Clarify compare comment * Change IllegalStateException to ISE * Remove TODO comments * Control possible null pointer exception * Add @Nullable annotation * Remove empty line * Remove unused parameter type * Improve AggregatorCombiner javadocs * Add filterNullValues option at StringLast and StringFirst aggregators * Add filterNullValues option at agg documentation * Fix checkstyle * Update header license * Fix StringFirstAggregatorFactory.VALUE_COMPARATOR * Fix StringFirstAggregatorCombiner * Fix if condition at StringFirstAggregateCombiner * Remove filterNullValues from string first/last aggregators * Add isReset flag in FirstAggregatorCombiner * Change Arrays.asList to Collections.singletonList
2018-08-01 13:52:54 -04:00
#### `stringFirst` aggregator
`stringFirst` computes the metric value with the minimum timestamp or `null` if no row exist
```json
{
"type" : "stringFirst",
"name" : <output_name>,
"fieldName" : <metric_name>,
"maxStringBytes" : <integer> # (optional, defaults to 1024),
"filterNullValues" : <boolean> # (optional, defaults to false)
}
```
#### `stringLast` aggregator
`stringLast` computes the metric value with the maximum timestamp or `null` if no row exist
```json
{
"type" : "stringLast",
"name" : <output_name>,
"fieldName" : <metric_name>,
"maxStringBytes" : <integer> # (optional, defaults to 1024),
"filterNullValues" : <boolean> # (optional, defaults to false)
}
```
### JavaScript aggregator
Computes an arbitrary JavaScript function over a set of columns (both metrics and dimensions are allowed). Your
JavaScript functions are expected to return floating-point values.
2016-01-06 00:27:52 -05:00
```json
{ "type": "javascript",
"name": "<output_name>",
"fieldNames" : [ <column1>, <column2>, ... ],
"fnAggregate" : "function(current, column1, column2, ...) {
<updates partial aggregate (current) based on the current row values>
return <updated partial aggregate>
}",
"fnCombine" : "function(partialA, partialB) { return <combined partial results>; }",
"fnReset" : "function() { return <initial value>; }"
}
```
**Example**
```json
{
"type": "javascript",
"name": "sum(log(x)*y) + 10",
"fieldNames": ["x", "y"],
"fnAggregate" : "function(current, a, b) { return current + (Math.log(a) * b); }",
"fnCombine" : "function(partialA, partialB) { return partialA + partialB; }",
"fnReset" : "function() { return 10; }"
}
```
<div class="note info">
JavaScript-based functionality is disabled by default. Please refer to the Druid <a href="../development/javascript.html">JavaScript programming guide</a> for guidelines about using Druid's JavaScript functionality, including instructions on how to enable it.
</div>
2015-12-31 19:32:51 -05:00
2016-02-04 14:53:09 -05:00
## Approximate Aggregations
### Cardinality aggregator
2016-02-04 14:53:09 -05:00
Computes the cardinality of a set of Druid dimensions, using HyperLogLog to estimate the cardinality. Please note that this
aggregator will be much slower than indexing a column with the hyperUnique aggregator. This aggregator also runs over a dimension column, which
means the string dimension cannot be removed from the dataset to improve rollup. In general, we strongly recommend using the hyperUnique aggregator
instead of the cardinality aggregator if you do not care about the individual values of a dimension.
```json
{
"type": "cardinality",
"name": "<output_name>",
"fields": [ <dimension1>, <dimension2>, ... ],
"byRow": <false | true> # (optional, defaults to false),
"round": <false | true> # (optional, defaults to false)
}
```
Each individual element of the "fields" list can be a String or [DimensionSpec](../querying/dimensionspecs.html). A String dimension in the fields list is equivalent to a DefaultDimensionSpec (no transformations).
The HyperLogLog algorithm generates decimal estimates with some error. "round" can be set to true to round off estimated
values to whole numbers. Note that even with rounding, the cardinality is still an estimate. The "round" field only
affects query-time behavior, and is ignored at ingestion-time.
#### Cardinality by value
When setting `byRow` to `false` (the default) it computes the cardinality of the set composed of the union of all dimension values for all the given dimensions.
* For a single dimension, this is equivalent to
```sql
SELECT COUNT(DISTINCT(dimension)) FROM <datasource>
```
* For multiple dimensions, this is equivalent to something akin to
```sql
SELECT COUNT(DISTINCT(value)) FROM (
SELECT dim_1 as value FROM <datasource>
UNION
SELECT dim_2 as value FROM <datasource>
UNION
SELECT dim_3 as value FROM <datasource>
)
```
#### Cardinality by row
When setting `byRow` to `true` it computes the cardinality by row, i.e. the cardinality of distinct dimension combinations.
This is equivalent to something akin to
```sql
SELECT COUNT(*) FROM ( SELECT DIM1, DIM2, DIM3 FROM <datasource> GROUP BY DIM1, DIM2, DIM3 )
```
**Example**
Determine the number of distinct countries people are living in or have come from.
```json
{
"type": "cardinality",
"name": "distinct_countries",
"fields": [ "country_of_origin", "country_of_residence" ]
}
```
Determine the number of distinct people (i.e. combinations of first and last name).
```json
{
"type": "cardinality",
"name": "distinct_people",
"fields": [ "first_name", "last_name" ],
"byRow" : true
}
```
Determine the number of distinct starting characters of last names
```json
{
"type": "cardinality",
"name": "distinct_last_name_first_char",
"fields": [
{
"type" : "extraction",
"dimension" : "last_name",
"outputName" : "last_name_first_char",
"extractionFn" : { "type" : "substring", "index" : 0, "length" : 1 }
}
],
"byRow" : true
}
```
### HyperUnique aggregator
Uses [HyperLogLog](http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf) to compute the estimated cardinality of a dimension that has been aggregated as a "hyperUnique" metric at indexing time.
```json
{
"type" : "hyperUnique",
"name" : <output_name>,
"fieldName" : <metric_name>,
"isInputHyperUnique" : false,
"round" : false
}
```
"isInputHyperUnique" can be set to true to index pre-computed HLL (Base64 encoded output from druid-hll is expected).
The "isInputHyperUnique" field only affects ingestion-time behavior, and is ignored at query-time.
The HyperLogLog algorithm generates decimal estimates with some error. "round" can be set to true to round off estimated
values to whole numbers. Note that even with rounding, the cardinality is still an estimate. The "round" field only
affects query-time behavior, and is ignored at ingestion-time.
For more approximate aggregators, check out the [DataSketches extension](../development/extensions-core/datasketches-extension.html).
2016-02-04 14:53:09 -05:00
## Miscellaneous Aggregations
### Filtered Aggregator
A filtered aggregator wraps any given aggregator, but only aggregates the values for which the given dimension filter matches.
This makes it possible to compute the results of a filtered and an unfiltered aggregation simultaneously, without having to issue multiple queries, and use both results as part of post-aggregations.
*Note:* If only the filtered results are required, consider putting the filter on the query itself, which will be much faster since it does not require scanning all the data.
```json
{
"type" : "filtered",
"filter" : {
"type" : "selector",
"dimension" : <dimension>,
"value" : <dimension value>
}
"aggregator" : <aggregation>
}
```