Druid is a data store designed for high-performance slice-and-dice analytics
("[OLAP](http://en.wikipedia.org/wiki/Online_analytical_processing)"-style) on large data sets. Druid is most often
used as a data store for powering GUI analytical applications, or as a backend for highly-concurrent APIs that need
fast aggregations. Common application areas for Druid include:
- Clickstream analytics
- Network flow analytics
- Server metrics storage
- Application performance metrics
- Digital marketing analytics
- Business intelligence / OLAP
Druid's key features are:
1.**Columnar storage format.** Druid uses column-oriented storage, meaning it only needs to load the exact columns
needed for a particular query. This gives a huge speed boost to queries that only hit a few columns. In addition, each
column is stored optimized for its particular data type, which supports fast scans and aggregations.
2.**Scalable distributed system.** Druid is typically deployed in clusters of tens to hundreds of servers, and can
offer ingest rates of millions of records/sec, retention of trillions of records, and query latencies of sub-second to a
few seconds.
3.**Massively parallel processing.** Druid can process a query in parallel across the entire cluster.
4.**Realtime or batch ingestion.** Druid can ingest data either realtime (ingested data is immediately available for
querying) or in batches.
5.**Self-healing, self-balancing, easy to operate.** As an operator, to scale the cluster out or in, simply add or
remove servers and the cluster will rebalance itself automatically, in the background, without any downtime. If any
Druid servers fail, the system will automatically route around the damage until those servers can be replaced. Druid
is designed to run 24/7 with no need for planned downtimes for any reason, including configuration changes and software
updates.
6.**Cloud-native, fault-tolerant architecture that won't lose data.** Once Druid has ingested your data, a copy is
stored safely in [deep storage](#deep-storage) (typically cloud storage, HDFS, or a shared filesystem). Your data can be
recovered from deep storage even if every single Druid server fails. For more limited failures affecting just a few
Druid servers, replication ensures that queries are still possible while the system recovers.
7.**Indexes for quick filtering.** Druid uses [CONCISE](https://arxiv.org/pdf/1004.0403) or
[Roaring](https://roaringbitmap.org/) compressed bitmap indexes to create indexes that power fast filtering and
searching across multiple columns.
8.**Approximate algorithms.** Druid includes algorithms for approximate count-distinct, approximate ranking, and
computation of approximate histograms and quantiles. These algorithms offer bounded memory usage and are often
substantially faster than exact computations. For situations where accuracy is more important than speed, Druid also
offers exact count-distinct and exact ranking.
9.**Automatic summarization at ingest time.** Druid optionally supports data summarization at ingestion time. This
summarization partially pre-aggregates your data, and can lead to big costs savings and performance boosts.
# When should I use Druid?<a id="when-to-use-druid"></a>
Druid is likely a good choice if your use case fits a few of the following descriptors:
- Insert rates are very high, but updates are less common.
- Most of your queries are aggregation and reporting queries ("group by" queries). You may also have searching and
scanning queries.
- You are targeting query latencies of 100ms to a few seconds.
- Your data has a time component (Druid includes optimizations and design choices specifically related to time).
- You may have more than one table, but each query hits just one big distributed table. Queries may potentially hit more
than one smaller "lookup" table.
- You have high cardinality data columns (e.g. URLs, user IDs) and need fast counting and ranking over them.
- You want to load data from Kafka, HDFS, flat files, or object storage like Amazon S3.
Situations where you would likely _not_ want to use Druid include:
- You need low-latency updates of _existing_ records using a primary key. Druid supports streaming inserts, but not streaming updates (updates are done using
background batch jobs).
- You are building an offline reporting system where query latency is not very important.
- You want to do "big" joins (joining one big fact table to another big fact table).
# Architecture
Druid has a multi-process, distributed architecture that is designed to be cloud-friendly and easy to operate. Each
Druid process type can be configured and scaled independently, giving you maximum flexibility over your cluster. This
design also provides enhanced fault tolerance: an outage of one component will not immediately affect other components.
Druid has several process types, briefly described below:
* [**Coordinator**](../design/coordinator.html) processes manage data availability on the cluster.
* [**Overlord**](../design/overlord.html) processes control the assignment of data ingestion workloads.
* [**Broker**](../design/broker.html) processes handle queries from external clients.
* [**Router**](../development/router.html) processes are optional processes that can route requests to Brokers, Coordinators, and Overlords.
* [**Historical**](../design/historical.html) processes store queryable data.
* [**MiddleManager**](../design/middlemanager.html) processes are responsible for ingesting data.
Druid processes can be deployed any way you like, but for ease of deployment we suggest organizing them into three server types: Master, Query, and Data.
* **Master**: Runs Coordinator and Overlord processes, manages data availability and ingestion.
* **Query**: Runs Broker and optional Router processes, handles queries from external clients.
* **Data**: Runs Historical and MiddleManager processes, executes ingestion workloads and stores all queryable data.
For more details on process and server organization, please see [Druid Processses and Servers](../design/processes.html).
### External dependencies
In addition to its built-in process types, Druid also has three external dependencies. These are intended to be able to
Druid uses deep storage only as a backup of your data and as a way to transfer data in the background between
Druid processes. To respond to queries, Historical processes do not read from deep storage, but instead read pre-fetched
segments from their local disks before any queries are served. This means that Druid never needs to access deep storage
during a query, helping it offer the best query latencies possible. It also means that you must have enough disk space
both in deep storage and across your Historical processes for the data you plan to load.
For more details, please see [Deep storage dependency](../dependencies/deep-storage.html).
#### Metadata storage
The metadata storage holds various shared system metadata such as segment availability information and task information. This is typically going to be a traditional RDBMS
like PostgreSQL or MySQL.
For more details, please see [Metadata storage dependency](../dependencies/metadata-storage.html)
#### Zookeeper
Used for internal service discovery, coordination, and leader election.
For more details, please see [Zookeeper dependency](../dependencies/zookeeper.html).