8.**Time-based partitioning.** Druid first partitions data by time, and can additionally partition based on other fields.
This means time-based queries will only access the partitions that match the time range of the query. This leads to
significant performance improvements for time-based data.
9.**Approximate algorithms.** Druid includes algorithms for approximate count-distinct, approximate ranking, and
computation of approximate histograms and quantiles. These algorithms offer bounded memory usage and are often
substantially faster than exact computations. For situations where accuracy is more important than speed, Druid also
offers exact count-distinct and exact ranking.
10.**Automatic summarization at ingest time.** Druid optionally supports data summarization at ingestion time. This
summarization partially pre-aggregates your data, and can lead to big costs savings and performance boosts.
## When should I use Druid?
Druid is used by many companies of various sizes for many different use cases. Check out the
[Powered by Apache Druid](/druid-powered) page
Druid is likely a good choice if your use case fits a few of the following descriptors:
- Insert rates are very high, but updates are less common.
- Most of your queries are aggregation and reporting queries ("group by" queries). You may also have searching and
scanning queries.
- You are targeting query latencies of 100ms to a few seconds.
- Your data has a time component (Druid includes optimizations and design choices specifically related to time).
- You may have more than one table, but each query hits just one big distributed table. Queries may potentially hit more
than one smaller "lookup" table.
- You have high cardinality data columns (e.g. URLs, user IDs) and need fast counting and ranking over them.
- You want to load data from Kafka, HDFS, flat files, or object storage like Amazon S3.
Situations where you would likely _not_ want to use Druid include:
- You need low-latency updates of _existing_ records using a primary key. Druid supports streaming inserts, but not streaming updates (updates are done using
background batch jobs).
- You are building an offline reporting system where query latency is not very important.
- You want to do "big" joins (joining one big fact table to another big fact table) and you are okay with these queries