2013-09-16 17:49:36 -04:00
---
2013-09-26 19:22:28 -04:00
layout: doc_page
2013-09-16 17:49:36 -04:00
---
2013-09-13 18:20:39 -04:00
Timeseries queries
==================
These types of queries take a timeseries query object and return an array of JSON objects where each object represents a value asked for by the timeseries query.
An example timeseries query object is shown below:
2013-09-27 20:08:34 -04:00
```json
2013-09-13 18:20:39 -04:00
{
2013-09-27 20:08:34 -04:00
"queryType": "timeseries",
"dataSource": "sample_datasource",
"granularity": "day",
"filter": {
"type": "and",
"fields": [
{ "type": "selector", "dimension": "sample_dimension1", "value": "sample_value1" },
{ "type": "or",
"fields": [
{ "type": "selector", "dimension": "sample_dimension2", "value": "sample_value2" },
{ "type": "selector", "dimension": "sample_dimension3", "value": "sample_value3" }
]
}
]
},
"aggregations": [
{ "type": "longSum", "name": "sample_name1", "fieldName": "sample_fieldName1" },
{ "type": "doubleSum", "name": "sample_name2", "fieldName": "sample_fieldName2" }
],
"postAggregations": [
{ "type": "arithmetic",
"name": "sample_divide",
"fn": "/",
"fields": [
{ "type": "fieldAccess", "name": "sample_name1", "fieldName": "sample_fieldName1" },
{ "type": "fieldAccess", "name": "sample_name2", "fieldName": "sample_fieldName2" }
]
}
],
"intervals": [ "2012-01-01T00:00:00.000/2012-01-03T00:00:00.000" ]
2013-09-13 18:20:39 -04:00
}
2013-09-27 20:08:34 -04:00
```
2013-09-13 18:20:39 -04:00
There are 7 main parts to a timeseries query:
|property|description|required?|
|--------|-----------|---------|
2013-09-27 20:08:34 -04:00
|queryType|This String should always be "timeseries"; this is the first thing Druid looks at to figure out how to interpret the query|yes|
2013-09-13 18:20:39 -04:00
|dataSource|A String defining the data source to query, very similar to a table in a relational database|yes|
2013-09-16 19:01:14 -04:00
|granularity|Defines the granularity of the query. See [Granularities ](Granularities.html )|yes|
|filter|See [Filters ](Filters.html )|no|
|aggregations|See [Aggregations ](Aggregations.html )|yes|
2014-02-13 19:39:44 -05:00
|postAggregations|See [Post Aggregations ](Post-aggregations.html )|no|
2013-09-13 18:20:39 -04:00
|intervals|A JSON Object representing ISO-8601 Intervals. This defines the time ranges to run the query over.|yes|
|context|An additional JSON Object which can be used to specify certain flags.|no|
2013-09-27 20:08:34 -04:00
To pull it all together, the above query would return 2 data points, one for each day between 2012-01-01 and 2012-01-03, from the "sample\_datasource" table. Each data point would be the (long) sum of sample\_fieldName1, the (double) sum of sample\_fieldName2 and the (double) the result of sample\_fieldName1 divided by sample\_fieldName2 for the filter set. The output looks like this:
2013-09-13 18:20:39 -04:00
2013-09-27 20:08:34 -04:00
```json
2013-09-13 18:20:39 -04:00
[
2013-09-27 20:08:34 -04:00
{
"timestamp": "2012-01-01T00:00:00.000Z",
"result": { "sample_name1": < some_value > , "sample_name2": < some_value > , "sample_divide": < some_value > }
},
{
"timestamp": "2012-01-02T00:00:00.000Z",
"result": { "sample_name1": < some_value > , "sample_name2": < some_value > , "sample_divide": < some_value > }
}
2013-09-13 18:20:39 -04:00
]
2014-02-13 19:39:44 -05:00
```