Identifiers for segments are typically constructed using the segment datasource, interval start time (in ISO 8601 format), interval end time (in ISO 8601 format), and a version. If data is additionally sharded beyond a time range, the segment identifier will also contain a partition number.
4 bytes representing the current segment version as an integer. E.g., for v9 segments, the version is 0x0, 0x0, 0x0, 0x9
*`meta.smoosh`
A file with metadata (filenames and offsets) about the contents of the other `smoosh` files
*`XXXXX.smoosh`
There are some number of these files, which are concatenated binary data
The `smoosh` files represent multiple files "smooshed" together in order to minimize the number of file descriptors that must be open to house the data. They are files of up to 2GB in size (to match the limit of a memory mapped ByteBuffer in Java). The `smoosh` files house individual files for each of the columns in the data as well as an `index.drd` file with extra metadata about the segment.
There is also a special column called `__time` that refers to the time column of the segment. This will hopefully become less and less special as the code evolves, but for now it’s as special as my Mommy always told me I am.
In the codebase, segments have an internal format version. The current segment format version is `v9`.
A ColumnDescriptor is essentially an object that allows us to use jackson’s polymorphic deserialization to add new and interesting methods of serialization with minimal impact to the code. It consists of some metadata about the column (what type is it, is it multi-value, etc.) and then a list of serde logic that can deserialize the rest of the binary.
Multiple segments may exist for the same interval of time for the same datasource. These segments form a `block` for an interval.
Depending on the type of `shardSpec` that is used to shard the data, Druid queries may only complete if a `block` is complete. That is to say, if a block consists of 3 segments, such as:
The exception to this rule is with using linear shard specs. Linear shard specs do not force 'completeness' and queries can complete even if shards are not loaded in the system.
For example, if your real-time ingestion creates 3 segments that were sharded with linear shard spec, and only two of the segments were loaded in the system, queries would return results only for those 2 segments.
identifies segments using the datasource, interval, version, and partition number. The partition number is only visible in the segment id if
there are multiple segments created for some granularity of time. For example, if you have hourly segments, but you
have more data in an hour than a single segment can hold, you can create multiple segments for the same hour. These segments will share
the same datasource, interval, and version, but have linearly increasing partition numbers.
```
foo_2015-01-01/2015-01-02_v1_0
foo_2015-01-01/2015-01-02_v1_1
foo_2015-01-01/2015-01-02_v1_2
```
In the example segments above, the dataSource = foo, interval = 2015-01-01/2015-01-02, version = v1, partitionNum = 0.
If at some later point in time, you reindex the data with a new schema, the newly created segments will have a higher version id.
```
foo_2015-01-01/2015-01-02_v2_0
foo_2015-01-01/2015-01-02_v2_1
foo_2015-01-01/2015-01-02_v2_2
```
Druid batch indexing (either Hadoop-based or IndexTask-based) guarantees atomic updates on an interval-by-interval basis.
In our example, until all `v2` segments for `2015-01-01/2015-01-02` are loaded in a Druid cluster, queries exclusively use `v1` segments.
Once all `v2` segments are loaded and queryable, all queries ignore `v1` segments and switch to the `v2` segments.
Shortly afterwards, the `v1` segments are unloaded from the cluster.
Note that updates that span multiple segment intervals are only atomic within each interval. They are not atomic across the entire update.
For example, you have segments such as the following:
```
foo_2015-01-01/2015-01-02_v1_0
foo_2015-01-02/2015-01-03_v1_1
foo_2015-01-03/2015-01-04_v1_2
```
`v2` segments will be loaded into the cluster as soon as they are built and replace `v1` segments for the period of time the
segments overlap. Before v2 segments are completely loaded, your cluster may have a mixture of `v1` and `v2` segments.
```
foo_2015-01-01/2015-01-02_v1_0
foo_2015-01-02/2015-01-03_v2_1
foo_2015-01-03/2015-01-04_v1_2
```
In this case, queries may hit a mixture of `v1` and `v2` segments.
## Different schemas among segments
Druid segments for the same datasource may have different schemas. If a string column (dimension) exists in one segment but not
another, queries that involve both segments still work. Queries for the segment missing the dimension will behave as if the dimension has only null values.
Similarly, if one segment has a numeric column (metric) but another does not, queries on the segment missing the
metric will generally "do the right thing". Aggregations over this missing metric behave as if the metric were missing.