Druid's extensions leverage Guice in order to add things at runtime. Basically, Guice is a framework for Dependency Injection, but we use it to hold the expected object graph of the Druid process. Extensions can make any changes they want/need to the object graph via adding Guice bindings. While the extensions actually give you the capability to change almost anything however you want, in general, we expect people to want to extend one of the things listed below. This means that we honor our [versioning strategy](./versioning.md) for changes that affect the interfaces called out on this page, but other interfaces are deemed "internal" and can be changed in an incompatible manner even between patch releases.
1. Add a new input source by extending `org.apache.druid.data.input.InputSource`.
1. Add a new input entity by extending `org.apache.druid.data.input.InputEntity`.
1. Add a new input source reader if necessary by extending `org.apache.druid.data.input.InputSourceReader`. You can use `org.apache.druid.data.input.impl.InputEntityIteratingReader` in most cases.
1. Add a new input format by extending `org.apache.druid.data.input.InputFormat`.
1. Add a new input entity reader by extending `org.apache.druid.data.input.TextReader` for text formats or `org.apache.druid.data.input.IntermediateRowParsingReader` for binary formats.
The `getJacksonModules()` method provides a list of Jackson modules that are used to help initialize the Jackson ObjectMapper instances used by Druid. This is how you add extensions that are instantiated via Jackson (like AggregatorFactory and InputSource objects) to Druid.
Once you have your DruidModule created, you will need to package an extra file in the `META-INF/services` directory of your jar. This is easiest to accomplish with a maven project by creating files in the `src/main/resources` directory. There are examples of this in the Druid code under the `cassandra-storage`, `hdfs-storage` and `s3-extensions` modules, for examples.
If your jar has this file, then when it is added to the classpath or as an extension, Druid will notice the file and will instantiate instances of the Module. Your Module should have a default constructor, but if you need access to runtime configuration properties, it can have a method with @Inject on it to get a Properties object injected into it from Guice.
The basic idea behind the extension is that you need to add bindings for your DataSegmentPusher and DataSegmentPuller objects. The way to add them is something like (taken from HdfsStorageDruidModule)
`Binders.dataSegment*Binder()` is a call provided by the druid-core jar which sets up a Guice multibind "MapBinder". If that doesn't make sense, don't worry about it, just think of it as a magical incantation.
`addBinding("hdfs")` for the Puller binder creates a new handler for loadSpec objects of type "hdfs". For the Pusher binder it creates a new type value that you can specify for the `druid.storage.type` parameter.
`to(...).in(...);` is normal Guice stuff.
In addition to DataSegmentPusher and DataSegmentPuller, you can also bind:
* DataSegmentKiller: Removes segments, used as part of the Kill Task to delete unused segments, i.e. perform garbage collection of segments that are either superseded by newer versions or that have been dropped from the cluster.
* DataSegmentMover: Allow migrating segments from one place to another, currently this is only used as part of the MoveTask to move unused segments to a different S3 bucket or prefix, typically to reduce storage costs of unused data (e.g. move to glacier or cheaper storage)
* DataSegmentArchiver: Just a wrapper around Mover, but comes with a pre-configured target bucket/path, so it doesn't have to be specified at runtime as part of the ArchiveTask.
**WARNING!** This is not a formal procedure, but a collection of hints to validate if your new deep storage implementation is able do push, pull and kill segments.
It's recommended to use batch ingestion tasks to validate your implementation.
Wherever your data storage (cloud storage service, distributed file system, etc.) is, you should be able to see one new file: `index.zip` (`partitionNum_index.zip` for HDFS data storage) after your ingestion task ends.
2015-04-14T02:42:33,450 INFO [ZkCoordinator-0] org.apache.druid.server.coordination.ZkCoordinator - New request[LOAD: dde_2015-01-02T00:00:00.000Z_2015-01-03T00:00:00
.000Z_2015-04-14T02:41:09.484Z] with zNode[/druid/dev/loadQueue/192.168.33.104:8081/dde_2015-01-02T00:00:00.000Z_2015-01-03T00:00:00.000Z_2015-04-14T02:41:09.
2015-04-14T02:42:33,463 INFO [ZkCoordinator-0] org.apache.druid.guice.JsonConfigurator - Loaded class[class org.apache.druid.storage.azure.AzureAccountConfig] from props[drui
d.azure.] as [org.apache.druid.storage.azure.AzureAccountConfig@759c9ad9]
2015-04-14T02:49:08,276 INFO [ZkCoordinator-0] org.apache.druid.storage.azure.AzureDataSegmentPuller - Loaded 1196 bytes from [dde/2015-01-02T00:00:00.000Z_2015-01-03
T00:00:00.000Z/2015-04-14T02:41:09.484Z/0/index.zip] to [/opt/druid/zk_druid/dde/2015-01-02T00:00:00.000Z_2015-01-03T00:00:00.000Z/2015-04-14T02:41:09.484Z/0]
2015-04-14T02:49:08,277 WARN [ZkCoordinator-0] org.apache.druid.segment.loading.SegmentLocalCacheManager - Segment [dde_2015-01-02T00:00:00.000Z_2015-01-03T00:00:00.000Z_2015-04-14T02:41:09.484Z] is different than expected size. Expected [0] found [1196]
2015-04-14T02:49:08,282 INFO [ZkCoordinator-0] org.apache.druid.server.coordination.BatchDataSegmentAnnouncer - Announcing segment[dde_2015-01-02T00:00:00.000Z_2015-01-03T00:00:00.000Z_2015-04-14T02:41:09.484Z] at path[/druid/dev/segments/192.168.33.104:8081/192.168.33.104:8081_historical__default_tier_2015-04-14T02:49:08.282Z_7bb87230ebf940188511dd4a53ffd7351]
2015-04-14T02:49:08,292 INFO [ZkCoordinator-0] org.apache.druid.server.coordination.ZkCoordinator - Completed request [LOAD: dde_2015-01-02T00:00:00.000Z_2015-01-03T00:00:00.000Z_2015-04-14T02:41:09.484Z]
The easiest way of testing the segment killing is marking a segment as not used and then starting a killing task through the old Coordinator console.
To mark a segment as not used, you need to connect to your metadata storage and update the `used` column to `false` on the segment table rows.
To start a segment killing task, you need to access the old Coordinator console `http://<COODRINATOR_IP>:<COORDINATOR_PORT/old-console/kill.html` then select the appropriate datasource and then input a time range (e.g. `2000/3000`).
This is registering the InputSource with Jackson's polymorphic serialization/deserialization layer. More concretely, having this will mean that if you specify a `"inputSource": { "type": "s3", ... }` in your IO config, then the system will load this InputSource for your `InputSource` implementation.
Note that inside of Druid, we have made the `@JacksonInject` annotation for Jackson deserialized objects actually use the base Guice injector to resolve the object to be injected. So, if your InputSource needs access to some object, you can add a `@JacksonInject` annotation on a setter and it will get set on instantiation.
### Adding support for a new data format
Adding support for a new data format requires implementing two interfaces, i.e., `InputFormat` and `InputEntityReader`.
`InputFormat` is to define how your data is formatted. `InputEntityReader` is to define how to parse your data and convert into Druid `InputRow`.
There is an example in the `druid-orc-extensions` module with the `OrcInputFormat` and `OrcReader`.
Adding an InputFormat is very similar to adding an InputSource. They operate purely through Jackson and thus should just be additions to the Jackson modules returned by your DruidModule.
Adding AggregatorFactory objects is very similar to InputSource objects. They operate purely through Jackson and thus should just be additions to the Jackson modules returned by your DruidModule.
Adding ComplexMetrics is a little ugly in the current version. The method of getting at complex metrics is through registration with the `ComplexMetrics.registerSerde()` method. There is no special Guice stuff to get this working, just in your `configure(Binder)` method register the serialization/deserialization.
The first one binds the SegmentMetadataQueryQueryToolChest for usage when a SegmentMetadataQuery is used. The second one does the same thing but for the QueryRunnerFactory instead.
### Adding new Jersey resources
Adding new Jersey resources to a module requires calling the following code to bind the resource in the module:
You will need to implement `org.apache.druid.metadata.PasswordProvider` interface. For every place where Druid uses PasswordProvider, a new instance of the implementation will be created,
where `SomePasswordProvider` is the implementation of `PasswordProvider` interface, you can have a look at `org.apache.druid.metadata.EnvironmentVariablePasswordProvider` for example.
### Adding a new DynamicConfigProvider implementation
You will need to implement `org.apache.druid.metadata.DynamicConfigProvider` interface. For every place where Druid uses DynamicConfigProvider, a new instance of the implementation will be created,
thus make sure all the necessary information required for fetching all information is supplied during object instantiation.
In your implementation of `org.apache.druid.initialization.DruidModule`, `getJacksonModules` should look something like this -
``` java
return ImmutableList.of(
new SimpleModule("SomeDynamicConfigProviderModule")
.registerSubtypes(
new NamedType(SomeDynamicConfigProvider.class, "some")
)
);
```
where `SomeDynamicConfigProvider` is the implementation of `DynamicConfigProvider` interface, you can have a look at `org.apache.druid.metadata.MapStringDynamicConfigProvider` for example.
To create a transform extension implement the `org.apache.druid.segment.transform.Transform` interface. You'll need to install the `druid-processing` package to import `org.apache.druid.segment.transform`.
In the new system for pluggable Coordinator duties, similar to what coordinator already does today, the duties can be grouped together.
The duties will be grouped into multiple groups as per the elements in list `druid.coordinator.dutyGroups`.
All duties in the same group will have the same run period configured by `druid.coordinator.<GROUP_NAME>.period`.
Currently, there is a single thread running the duties sequentially for each group.
For example, see `KillSupervisorsCustomDuty` for a custom coordinator duty implementation and `common-custom-coordinator-duties`
integration test group which loads `KillSupervisorsCustomDuty` using the configs set in `integration-tests/docker/environment-configs/common-custom-coordinator-duties`.
The relevant configs in `integration-tests/docker/environment-configs/common-custom-coordinator-duties` are as follows:
(The configs create a custom coordinator duty group called `cleanupMetadata` which runs a custom coordinator duty called `killSupervisors` every 10 seconds.
The custom coordinator duty `killSupervisors` also has a config called `retainDuration` which is set to 0 minute)
### Bundle your extension with all the other Druid extensions
When you do `mvn install`, Druid extensions will be packaged within the Druid tarball and `extensions` directory, which are both underneath `distribution/target/`.
If you want your extension to be included, you can add your extension's maven coordinate as an argument at
During `mvn install`, maven will install your extension to the local maven repository, and then call [pull-deps](../operations/pull-deps.md) to pull your extension from
Managing library collisions can be daunting for extensions which draw in commonly used libraries. Here is a list of group IDs for libraries that are suggested to be specified with a `provided` scope to prevent collision with versions used in druid: