druid/docs/content/Aggregations.md

95 lines
2.4 KiB
Markdown
Raw Normal View History

---
2013-09-26 19:22:28 -04:00
layout: doc_page
---
2014-01-16 18:37:07 -05:00
# Aggregations
2013-09-16 19:01:14 -04:00
Aggregations are specifications of processing over metrics available in Druid.
Available aggregations are:
### Count aggregator
`count` computes the row count that match the filters
```json
{ "type" : "count", "name" : <output_name> }
```
2013-09-16 19:01:14 -04:00
### Sum aggregators
#### `longSum` aggregator
computes the sum of values as a 64-bit, signed integer
```json
{ "type" : "longSum", "name" : <output_name>, "fieldName" : <metric_name> }
```
2013-09-16 19:01:14 -04:00
`name` output name for the summed value
`fieldName` name of the metric column to sum over
#### `doubleSum` aggregator
Computes the sum of values as 64-bit floating point value. Similar to `longSum`
```json
{ "type" : "doubleSum", "name" : <output_name>, "fieldName" : <metric_name> }
```
2013-09-16 19:01:14 -04:00
### Min / Max aggregators
#### `min` aggregator
`min` computes the minimum metric value
```json
{ "type" : "min", "name" : <output_name>, "fieldName" : <metric_name> }
```
2013-09-16 19:01:14 -04:00
#### `max` aggregator
`max` computes the maximum metric value
```json
{ "type" : "max", "name" : <output_name>, "fieldName" : <metric_name> }
```
2013-09-16 19:01:14 -04:00
### JavaScript aggregator
Computes an arbitrary JavaScript function over a set of columns (both metrics and dimensions).
All JavaScript functions must return numerical values.
```json
{ "type": "javascript", "name": "<output_name>",
"fieldNames" : [ <column1>, <column2>, ... ],
"fnAggregate" : "function(current, column1, column2, ...) {
<updates partial aggregate (current) based on the current row values>
return <updated partial aggregate>
}",
"fnCombine" : "function(partialA, partialB) { return <combined partial results>; }",
"fnReset" : "function() { return <initial value>; }"
}
```
2013-09-16 19:01:14 -04:00
**Example**
```json
{
"type": "javascript",
"name": "sum(log(x)/y) + 10",
"fieldNames": ["x", "y"],
"fnAggregate" : "function(current, a, b) { return current + (Math.log(a) * b); }",
"fnCombine" : "function(partialA, partialB) { return partialA + partialB; }",
"fnReset" : "function() { return 10; }"
}
```
2014-03-05 17:19:38 -05:00
### Complex aggregators
#### `hyperUnique` aggregator
`hyperUnique` uses [Hyperloglog](http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf) to compute the estimated cardinality of a dimension.
```json
{ "type" : "hyperUnique", "name" : <output_name>, "fieldName" : <metric_name> }
```