druid/docs/content/development/extensions-contrib/statsd.md

47 lines
2.0 KiB
Markdown
Raw Normal View History

2016-04-28 21:41:02 -04:00
---
layout: doc_page
---
# StatsD Emitter
To use this extension, make sure to [include](../../operations/including-extensions.html) `statsd-emitter` extension.
## Introduction
This extension emits druid metrics to a StatsD server.
(https://github.com/etsy/statsd)
(https://github.com/armon/statsite)
## Configuration
All the configuration parameters for the StatsD emitter are under `druid.emitter.statsd`.
|property|description|required?|default|
|--------|-----------|---------|-------|
|`druid.emitter.statsd.hostname`|The hostname of the StatsD server.|yes|none|
|`druid.emitter.statsd.port`|The port of the StatsD server.|yes|none|
|`druid.emitter.statsd.prefix`|Optional metric name prefix.|no|""|
|`druid.emitter.statsd.separator`|Metric name separator|no|.|
|`druid.emitter.statsd.includeHost`|Flag to include the hostname as part of the metric name.|no|false|
|`druid.emitter.statsd.dimensionMapPath`|JSON file defining the StatsD type, and desired dimensions for every Druid metric|no|Default mapping provided. See below.|
### Druid to StatsD Event Converter
Each metric sent to StatsD must specify a type, one of `[timer, counter, guage]`. StatsD Emitter expects this mapping to
be provided as a JSON file. Additionally, this mapping specifies which dimensions should be included for each metric.
If the user does not specify their own JSON file, a default mapping is used. All
metrics are expected to be mapped. Metrics which are not mapped will log an error.
StatsD metric path is organized using the following schema:
`<druid metric name> : { "dimensions" : <dimension list>, "type" : <StatsD type>}`
e.g.
`query/time" : { "dimensions" : ["dataSource", "type"], "type" : "timer"}`
For metrics which are emitted from multiple services with different dimensions, the metric name is prefixed with
the service name.
e.g.
`"coordinator-segment/count" : { "dimensions" : ["dataSource"], "type" : "gauge" },
"historical-segment/count" : { "dimensions" : ["dataSource", "tier", "priority"], "type" : "gauge" }`
For most use-cases, the default mapping is sufficient.