druid/docs/content/querying/aggregations.md

317 lines
9.7 KiB
Markdown
Raw Normal View History

---
layout: doc_page
title: "Aggregations"
---
<!--
~ Licensed to the Apache Software Foundation (ASF) under one
~ or more contributor license agreements. See the NOTICE file
~ distributed with this work for additional information
~ regarding copyright ownership. The ASF licenses this file
~ to you under the Apache License, Version 2.0 (the
~ "License"); you may not use this file except in compliance
~ with the License. You may obtain a copy of the License at
~
~ http://www.apache.org/licenses/LICENSE-2.0
~
~ Unless required by applicable law or agreed to in writing,
~ software distributed under the License is distributed on an
~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
~ KIND, either express or implied. See the License for the
~ specific language governing permissions and limitations
~ under the License.
-->
# Aggregations
2015-12-31 19:32:51 -05:00
Aggregations can be provided at ingestion time as part of the ingestion spec as a way of summarizing data before it enters Druid.
Aggregations can also be specified as part of many queries at query time.
Available aggregations are:
### Count aggregator
2015-12-31 19:32:51 -05:00
`count` computes the count of Druid rows that match the filters.
```json
{ "type" : "count", "name" : <output_name> }
```
2015-12-31 19:32:51 -05:00
Please note the count aggregator counts the number of Druid rows, which does not always reflect the number of raw events ingested.
This is because Druid can be configured to roll up data at ingestion time. To
2015-12-31 19:32:51 -05:00
count the number of ingested rows of data, include a count aggregator at ingestion time, and a longSum aggregator at
query time.
### Sum aggregators
#### `longSum` aggregator
computes the sum of values as a 64-bit, signed integer
```json
{ "type" : "longSum", "name" : <output_name>, "fieldName" : <metric_name> }
```
`name` output name for the summed value
`fieldName` name of the metric column to sum over
#### `doubleSum` aggregator
Computes and stores the sum of values as 64-bit floating point value. Similar to `longSum`
```json
{ "type" : "doubleSum", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `floatSum` aggregator
Computes and stores the sum of values as 32-bit floating point value. Similar to `longSum` and `doubleSum`
```json
{ "type" : "floatSum", "name" : <output_name>, "fieldName" : <metric_name> }
```
### Min / Max aggregators
#### `doubleMin` aggregator
`doubleMin` computes the minimum of all metric values and Double.POSITIVE_INFINITY
```json
{ "type" : "doubleMin", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `doubleMax` aggregator
`doubleMax` computes the maximum of all metric values and Double.NEGATIVE_INFINITY
```json
{ "type" : "doubleMax", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `floatMin` aggregator
`floatMin` computes the minimum of all metric values and Float.POSITIVE_INFINITY
```json
{ "type" : "floatMin", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `floatMax` aggregator
`floatMax` computes the maximum of all metric values and Float.NEGATIVE_INFINITY
```json
{ "type" : "floatMax", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `longMin` aggregator
`longMin` computes the minimum of all metric values and Long.MAX_VALUE
```json
{ "type" : "longMin", "name" : <output_name>, "fieldName" : <metric_name> }
```
#### `longMax` aggregator
`longMax` computes the maximum of all metric values and Long.MIN_VALUE
```json
{ "type" : "longMax", "name" : <output_name>, "fieldName" : <metric_name> }
```
### First / Last aggregator
Add stringLast and stringFirst aggregators extension (#5789) * Add lastString and firstString aggregators extension * Remove duplicated class * Move first-last-string doc page to extensions-contrib * Fix ObjectStrategy compare method * Fix doc bad aggregatos type name * Create FoldingAggregatorFactory classes to fix SegmentMetadataQuery * Add getMaxStringBytes() method to support JSON serialization * Fix null pointer exception at segment creation phase when the string value is null * Control the valueSelector object class on BufferAggregators * Perform all improvements * Add java doc on SerializablePairLongStringSerde * Refactor ObjectStraty compare method * Remove unused ; * Add aggregateCombiner unit tests. Rename BufferAggregators unit tests * Remove unused imports * Add license header * Add class name to java doc class serde * Throw exception if value is unsupported class type * Move first-last-string extension into druid core * Update druid core docs * Fix null pointer exception when pair->string is null * Add null control unit tests * Remove unused imports * Add first/last string folding aggregator on AggregatorsModule to support segment metadata query * Change SerializablePairLongString to extend SerializablePair * Change vars from public to private * Convert vars to primitive type * Clarify compare comment * Change IllegalStateException to ISE * Remove TODO comments * Control possible null pointer exception * Add @Nullable annotation * Remove empty line * Remove unused parameter type * Improve AggregatorCombiner javadocs * Add filterNullValues option at StringLast and StringFirst aggregators * Add filterNullValues option at agg documentation * Fix checkstyle * Update header license * Fix StringFirstAggregatorFactory.VALUE_COMPARATOR * Fix StringFirstAggregatorCombiner * Fix if condition at StringFirstAggregateCombiner * Remove filterNullValues from string first/last aggregators * Add isReset flag in FirstAggregatorCombiner * Change Arrays.asList to Collections.singletonList
2018-08-01 13:52:54 -04:00
(Double/Float/Long) First and Last aggregator cannot be used in ingestion spec, and should only be specified as part of queries.
Note that queries with first/last aggregators on a segment created with rollup enabled will return the rolled up value, and not the last value within the raw ingested data.
#### `doubleFirst` aggregator
`doubleFirst` computes the metric value with the minimum timestamp or 0 if no row exist
```json
{
"type" : "doubleFirst",
"name" : <output_name>,
"fieldName" : <metric_name>
}
```
#### `doubleLast` aggregator
`doubleLast` computes the metric value with the maximum timestamp or 0 if no row exist
```json
{
"type" : "doubleLast",
"name" : <output_name>,
"fieldName" : <metric_name>
}
```
#### `floatFirst` aggregator
`floatFirst` computes the metric value with the minimum timestamp or 0 if no row exist
```json
{
"type" : "floatFirst",
"name" : <output_name>,
"fieldName" : <metric_name>
}
```
#### `floatLast` aggregator
`floatLast` computes the metric value with the maximum timestamp or 0 if no row exist
```json
{
"type" : "floatLast",
"name" : <output_name>,
"fieldName" : <metric_name>
}
```
#### `longFirst` aggregator
`longFirst` computes the metric value with the minimum timestamp or 0 if no row exist
```json
{
"type" : "longFirst",
"name" : <output_name>,
"fieldName" : <metric_name>
}
```
#### `longLast` aggregator
`longLast` computes the metric value with the maximum timestamp or 0 if no row exist
```json
{
"type" : "longLast",
"name" : <output_name>,
"fieldName" : <metric_name>,
}
```
Add stringLast and stringFirst aggregators extension (#5789) * Add lastString and firstString aggregators extension * Remove duplicated class * Move first-last-string doc page to extensions-contrib * Fix ObjectStrategy compare method * Fix doc bad aggregatos type name * Create FoldingAggregatorFactory classes to fix SegmentMetadataQuery * Add getMaxStringBytes() method to support JSON serialization * Fix null pointer exception at segment creation phase when the string value is null * Control the valueSelector object class on BufferAggregators * Perform all improvements * Add java doc on SerializablePairLongStringSerde * Refactor ObjectStraty compare method * Remove unused ; * Add aggregateCombiner unit tests. Rename BufferAggregators unit tests * Remove unused imports * Add license header * Add class name to java doc class serde * Throw exception if value is unsupported class type * Move first-last-string extension into druid core * Update druid core docs * Fix null pointer exception when pair->string is null * Add null control unit tests * Remove unused imports * Add first/last string folding aggregator on AggregatorsModule to support segment metadata query * Change SerializablePairLongString to extend SerializablePair * Change vars from public to private * Convert vars to primitive type * Clarify compare comment * Change IllegalStateException to ISE * Remove TODO comments * Control possible null pointer exception * Add @Nullable annotation * Remove empty line * Remove unused parameter type * Improve AggregatorCombiner javadocs * Add filterNullValues option at StringLast and StringFirst aggregators * Add filterNullValues option at agg documentation * Fix checkstyle * Update header license * Fix StringFirstAggregatorFactory.VALUE_COMPARATOR * Fix StringFirstAggregatorCombiner * Fix if condition at StringFirstAggregateCombiner * Remove filterNullValues from string first/last aggregators * Add isReset flag in FirstAggregatorCombiner * Change Arrays.asList to Collections.singletonList
2018-08-01 13:52:54 -04:00
#### `stringFirst` aggregator
`stringFirst` computes the metric value with the minimum timestamp or `null` if no row exist
```json
{
"type" : "stringFirst",
"name" : <output_name>,
"fieldName" : <metric_name>,
"maxStringBytes" : <integer> # (optional, defaults to 1024),
"filterNullValues" : <boolean> # (optional, defaults to false)
}
```
#### `stringLast` aggregator
`stringLast` computes the metric value with the maximum timestamp or `null` if no row exist
```json
{
"type" : "stringLast",
"name" : <output_name>,
"fieldName" : <metric_name>,
"maxStringBytes" : <integer> # (optional, defaults to 1024),
"filterNullValues" : <boolean> # (optional, defaults to false)
}
```
### JavaScript aggregator
Computes an arbitrary JavaScript function over a set of columns (both metrics and dimensions are allowed). Your
JavaScript functions are expected to return floating-point values.
2016-01-06 00:27:52 -05:00
```json
{ "type": "javascript",
"name": "<output_name>",
"fieldNames" : [ <column1>, <column2>, ... ],
"fnAggregate" : "function(current, column1, column2, ...) {
<updates partial aggregate (current) based on the current row values>
return <updated partial aggregate>
}",
"fnCombine" : "function(partialA, partialB) { return <combined partial results>; }",
"fnReset" : "function() { return <initial value>; }"
}
```
**Example**
```json
{
"type": "javascript",
"name": "sum(log(x)*y) + 10",
"fieldNames": ["x", "y"],
"fnAggregate" : "function(current, a, b) { return current + (Math.log(a) * b); }",
"fnCombine" : "function(partialA, partialB) { return partialA + partialB; }",
"fnReset" : "function() { return 10; }"
}
```
<div class="note info">
JavaScript-based functionality is disabled by default. Please refer to the Druid <a href="../development/javascript.html">JavaScript programming guide</a> for guidelines about using Druid's JavaScript functionality, including instructions on how to enable it.
</div>
2015-12-31 19:32:51 -05:00
<a name="approx" />
2016-02-04 14:53:09 -05:00
## Approximate Aggregations
### Count distinct
#### DataSketches Theta Sketch
The [DataSketches Theta Sketch](../development/extensions-core/datasketches-theta.html) extension-provided aggregator gives distinct count estimates with support for set union, intersection, and difference post-aggregators, using Theta sketches from the [datasketches](http://datasketches.github.io/) library.
#### DataSketches HLL Sketch
The [DataSketches HLL Sketch](../development/extensions-core/datasketches-hll.html) extension-provided aggregator gives distinct count estimates using the HyperLogLog algorithm. The HLL Sketch is faster and requires less storage than the Theta Sketch, but does not support intersection or difference operations.
#### Cardinality/HyperUnique
The [Cardinality and HyperUnique](../hll-old.html) aggregators are older aggregator implementations available by default in Druid that also provide distinct count estimates using the HyperLogLog algorithm. The newer [DataSketches HLL Sketch](../development/extensions-core/datasketches-hll.html) extension-provided aggregator has superior accuracy and performance and is recommended instead.
Please note that DataSketches HLL aggregators and `hyperUnique` aggregators are not mutually compatible.
### Histograms and quantiles
#### DataSketches Quantiles Sketch
The [DataSketches Quantiles Sketch](../development/extensions-core/datasketches-quantiles.html) extension-provided aggregator provides quantile estimates and histogram approximations using the numeric quantiles DoublesSketch from the [datasketches](http://datasketches.github.io/) library.
#### Approximate Histogram
The [Approximate Histogram](../development/extensions-core/approxiate-histograms.html) extension-provided aggregator also provides quantile estimates and histogram approximations, based on [http://jmlr.org/papers/volume11/ben-haim10a/ben-haim10a.pdf](http://jmlr.org/papers/volume11/ben-haim10a/ben-haim10a.pdf).
2016-02-04 14:53:09 -05:00
## Miscellaneous Aggregations
### Filtered Aggregator
A filtered aggregator wraps any given aggregator, but only aggregates the values for which the given dimension filter matches.
This makes it possible to compute the results of a filtered and an unfiltered aggregation simultaneously, without having to issue multiple queries, and use both results as part of post-aggregations.
*Note:* If only the filtered results are required, consider putting the filter on the query itself, which will be much faster since it does not require scanning all the data.
```json
{
"type" : "filtered",
"filter" : {
"type" : "selector",
"dimension" : <dimension>,
"value" : <dimension value>
}
"aggregator" : <aggregation>
}
```