mirror of https://github.com/apache/druid.git
Rework DeterminePartitionsJob in the hadoop indexer
- Can handle non-rolled-up input (by grouping input rows using an additional MR stage) - Can select its own partitioning dimension, if none is supplied - Can detect and avoid oversized shards due to bad dimension value distribution - Shares input parsing code with IndexGeneratorJob
This commit is contained in:
parent
616415cb7e
commit
7b42ee6a6e
|
@ -23,21 +23,22 @@ import com.google.common.base.Charsets;
|
|||
import com.google.common.base.Function;
|
||||
import com.google.common.base.Joiner;
|
||||
import com.google.common.base.Optional;
|
||||
import com.google.common.base.Preconditions;
|
||||
import com.google.common.base.Splitter;
|
||||
import com.google.common.base.Throwables;
|
||||
import com.google.common.collect.ComparisonChain;
|
||||
import com.google.common.collect.ImmutableList;
|
||||
import com.google.common.collect.ImmutableSortedSet;
|
||||
import com.google.common.collect.Iterables;
|
||||
import com.google.common.collect.Iterators;
|
||||
import com.google.common.collect.Lists;
|
||||
import com.google.common.collect.Maps;
|
||||
import com.google.common.collect.PeekingIterator;
|
||||
import com.google.common.io.Closeables;
|
||||
import com.metamx.common.IAE;
|
||||
import com.metamx.common.Pair;
|
||||
import com.metamx.common.ISE;
|
||||
import com.metamx.common.guava.nary.BinaryFn;
|
||||
import com.metamx.common.logger.Logger;
|
||||
import com.metamx.common.parsers.Parser;
|
||||
import com.metamx.common.parsers.ParserUtils;
|
||||
import com.metamx.druid.CombiningIterable;
|
||||
import com.metamx.druid.input.InputRow;
|
||||
import com.metamx.druid.shard.NoneShardSpec;
|
||||
import com.metamx.druid.shard.ShardSpec;
|
||||
import com.metamx.druid.shard.SingleDimensionShardSpec;
|
||||
|
@ -45,7 +46,7 @@ import org.apache.hadoop.conf.Configuration;
|
|||
import org.apache.hadoop.fs.FileSystem;
|
||||
import org.apache.hadoop.fs.Path;
|
||||
import org.apache.hadoop.io.BytesWritable;
|
||||
import org.apache.hadoop.io.LongWritable;
|
||||
import org.apache.hadoop.io.NullWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.io.Writable;
|
||||
import org.apache.hadoop.mapred.InvalidJobConfException;
|
||||
|
@ -56,8 +57,11 @@ import org.apache.hadoop.mapreduce.RecordWriter;
|
|||
import org.apache.hadoop.mapreduce.Reducer;
|
||||
import org.apache.hadoop.mapreduce.TaskAttemptContext;
|
||||
import org.apache.hadoop.mapreduce.TaskInputOutputContext;
|
||||
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
|
||||
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
|
||||
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
|
||||
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
|
||||
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
|
||||
import org.codehaus.jackson.type.TypeReference;
|
||||
import org.joda.time.DateTime;
|
||||
import org.joda.time.DateTimeComparator;
|
||||
|
@ -65,20 +69,26 @@ import org.joda.time.Interval;
|
|||
|
||||
import java.io.IOException;
|
||||
import java.io.OutputStream;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Comparator;
|
||||
import java.util.Iterator;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Set;
|
||||
|
||||
/**
|
||||
* Determines appropriate ShardSpecs for a job by determining whether or not partitioning is necessary, and if so,
|
||||
* choosing the highest cardinality dimension that satisfies the criteria:
|
||||
*
|
||||
* <ul>
|
||||
* <li>Must have exactly one value per row.</li>
|
||||
* <li>Must not generate oversized partitions. A dimension with N rows having the same value will necessarily
|
||||
* put all those rows in the same partition, and that partition may be much larger than the target size.</li>
|
||||
* </ul>
|
||||
*/
|
||||
public class DeterminePartitionsJob implements Jobby
|
||||
{
|
||||
private static final Logger log = new Logger(DeterminePartitionsJob.class);
|
||||
|
||||
private static final Joiner keyJoiner = Joiner.on(",");
|
||||
private static final Splitter keySplitter = Splitter.on(",");
|
||||
private static final Joiner tabJoiner = HadoopDruidIndexerConfig.tabJoiner;
|
||||
private static final Splitter tabSplitter = HadoopDruidIndexerConfig.tabSplitter;
|
||||
|
||||
|
@ -91,96 +101,171 @@ public class DeterminePartitionsJob implements Jobby
|
|||
this.config = config;
|
||||
}
|
||||
|
||||
public boolean run()
|
||||
public static void injectSystemProperties(Job job)
|
||||
{
|
||||
try {
|
||||
Job job = new Job(
|
||||
new Configuration(),
|
||||
String.format("%s-determine_partitions-%s", config.getDataSource(), config.getIntervals())
|
||||
);
|
||||
|
||||
job.getConfiguration().set("io.sort.record.percent", "0.19");
|
||||
for (String propName : System.getProperties().stringPropertyNames()) {
|
||||
Configuration conf = job.getConfiguration();
|
||||
if (propName.startsWith("hadoop.")) {
|
||||
conf.set(propName.substring("hadoop.".length()), System.getProperty(propName));
|
||||
}
|
||||
for (String propName : System.getProperties().stringPropertyNames()) {
|
||||
Configuration conf = job.getConfiguration();
|
||||
if (propName.startsWith("hadoop.")) {
|
||||
conf.set(propName.substring("hadoop.".length()), System.getProperty(propName));
|
||||
}
|
||||
|
||||
job.setInputFormatClass(TextInputFormat.class);
|
||||
|
||||
job.setMapperClass(DeterminePartitionsMapper.class);
|
||||
job.setMapOutputValueClass(Text.class);
|
||||
|
||||
SortableBytes.useSortableBytesAsKey(job);
|
||||
|
||||
job.setCombinerClass(DeterminePartitionsCombiner.class);
|
||||
job.setReducerClass(DeterminePartitionsReducer.class);
|
||||
job.setOutputKeyClass(BytesWritable.class);
|
||||
job.setOutputValueClass(Text.class);
|
||||
job.setOutputFormatClass(DeterminePartitionsJob.DeterminePartitionsOutputFormat.class);
|
||||
FileOutputFormat.setOutputPath(job, config.makeIntermediatePath());
|
||||
|
||||
config.addInputPaths(job);
|
||||
config.intoConfiguration(job);
|
||||
|
||||
job.setJarByClass(DeterminePartitionsJob.class);
|
||||
|
||||
job.submit();
|
||||
log.info("Job submitted, status available at %s", job.getTrackingURL());
|
||||
|
||||
final boolean retVal = job.waitForCompletion(true);
|
||||
|
||||
if (retVal) {
|
||||
log.info("Job completed, loading up partitions for intervals[%s].", config.getSegmentGranularIntervals());
|
||||
FileSystem fileSystem = null;
|
||||
Map<DateTime, List<HadoopyShardSpec>> shardSpecs = Maps.newTreeMap(DateTimeComparator.getInstance());
|
||||
int shardCount = 0;
|
||||
for (Interval segmentGranularity : config.getSegmentGranularIntervals()) {
|
||||
DateTime bucket = segmentGranularity.getStart();
|
||||
|
||||
final Path partitionInfoPath = config.makeSegmentPartitionInfoPath(new Bucket(0, bucket, 0));
|
||||
if (fileSystem == null) {
|
||||
fileSystem = partitionInfoPath.getFileSystem(job.getConfiguration());
|
||||
}
|
||||
if (fileSystem.exists(partitionInfoPath)) {
|
||||
List<ShardSpec> specs = config.jsonMapper.readValue(
|
||||
Utils.openInputStream(job, partitionInfoPath), new TypeReference<List<ShardSpec>>()
|
||||
{
|
||||
}
|
||||
);
|
||||
|
||||
List<HadoopyShardSpec> actualSpecs = Lists.newArrayListWithExpectedSize(specs.size());
|
||||
for (int i = 0; i < specs.size(); ++i) {
|
||||
actualSpecs.add(new HadoopyShardSpec(specs.get(i), shardCount++));
|
||||
log.info("DateTime[%s], partition[%d], spec[%s]", bucket, i, actualSpecs.get(i));
|
||||
}
|
||||
|
||||
shardSpecs.put(bucket, actualSpecs);
|
||||
}
|
||||
else {
|
||||
log.info("Path[%s] didn't exist!?", partitionInfoPath);
|
||||
}
|
||||
}
|
||||
config.setShardSpecs(shardSpecs);
|
||||
}
|
||||
else {
|
||||
log.info("Job completed unsuccessfully.");
|
||||
}
|
||||
|
||||
return retVal;
|
||||
}
|
||||
catch (Exception e) {
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
}
|
||||
|
||||
public static class DeterminePartitionsMapper extends Mapper<LongWritable, Text, BytesWritable, Text>
|
||||
public boolean run()
|
||||
{
|
||||
try {
|
||||
/*
|
||||
* Group by (timestamp, dimensions) so we can correctly count dimension values as they would appear
|
||||
* in the final segment.
|
||||
*/
|
||||
final Job groupByJob = new Job(
|
||||
new Configuration(),
|
||||
String.format("%s-determine_partitions_groupby-%s", config.getDataSource(), config.getIntervals())
|
||||
);
|
||||
|
||||
injectSystemProperties(groupByJob);
|
||||
groupByJob.setInputFormatClass(TextInputFormat.class);
|
||||
groupByJob.setMapperClass(DeterminePartitionsGroupByMapper.class);
|
||||
groupByJob.setMapOutputKeyClass(Text.class);
|
||||
groupByJob.setMapOutputValueClass(NullWritable.class);
|
||||
groupByJob.setCombinerClass(DeterminePartitionsGroupByReducer.class);
|
||||
groupByJob.setReducerClass(DeterminePartitionsGroupByReducer.class);
|
||||
groupByJob.setOutputKeyClass(Text.class);
|
||||
groupByJob.setOutputValueClass(NullWritable.class);
|
||||
groupByJob.setOutputFormatClass(SequenceFileOutputFormat.class);
|
||||
groupByJob.setJarByClass(DeterminePartitionsJob.class);
|
||||
|
||||
config.addInputPaths(groupByJob);
|
||||
config.intoConfiguration(groupByJob);
|
||||
FileOutputFormat.setOutputPath(groupByJob, config.makeGroupedDataDir());
|
||||
|
||||
groupByJob.submit();
|
||||
log.info("Job submitted, status available at: %s", groupByJob.getTrackingURL());
|
||||
|
||||
if(!groupByJob.waitForCompletion(true)) {
|
||||
log.error("Job failed: %s", groupByJob.getJobID().toString());
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* Read grouped data from previous job and determine appropriate partitions.
|
||||
*/
|
||||
final Job dimSelectionJob = new Job(
|
||||
new Configuration(),
|
||||
String.format("%s-determine_partitions_dimselection-%s", config.getDataSource(), config.getIntervals())
|
||||
);
|
||||
|
||||
dimSelectionJob.getConfiguration().set("io.sort.record.percent", "0.19");
|
||||
|
||||
injectSystemProperties(dimSelectionJob);
|
||||
dimSelectionJob.setInputFormatClass(SequenceFileInputFormat.class);
|
||||
dimSelectionJob.setMapperClass(DeterminePartitionsDimSelectionMapper.class);
|
||||
SortableBytes.useSortableBytesAsMapOutputKey(dimSelectionJob);
|
||||
dimSelectionJob.setMapOutputValueClass(Text.class);
|
||||
dimSelectionJob.setCombinerClass(DeterminePartitionsDimSelectionCombiner.class);
|
||||
dimSelectionJob.setReducerClass(DeterminePartitionsDimSelectionReducer.class);
|
||||
dimSelectionJob.setOutputKeyClass(BytesWritable.class);
|
||||
dimSelectionJob.setOutputValueClass(Text.class);
|
||||
dimSelectionJob.setOutputFormatClass(DeterminePartitionsDimSelectionOutputFormat.class);
|
||||
dimSelectionJob.setJarByClass(DeterminePartitionsJob.class);
|
||||
|
||||
config.intoConfiguration(dimSelectionJob);
|
||||
FileInputFormat.addInputPath(dimSelectionJob, config.makeGroupedDataDir());
|
||||
FileOutputFormat.setOutputPath(dimSelectionJob, config.makeIntermediatePath());
|
||||
|
||||
dimSelectionJob.submit();
|
||||
log.info("Job submitted, status available at: %s", dimSelectionJob.getTrackingURL());
|
||||
|
||||
if(!dimSelectionJob.waitForCompletion(true)) {
|
||||
log.error("Job failed: %s", dimSelectionJob.getJobID().toString());
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* Load partitions determined by the previous job.
|
||||
*/
|
||||
|
||||
log.info("Job completed, loading up partitions for intervals[%s].", config.getSegmentGranularIntervals());
|
||||
FileSystem fileSystem = null;
|
||||
Map<DateTime, List<HadoopyShardSpec>> shardSpecs = Maps.newTreeMap(DateTimeComparator.getInstance());
|
||||
int shardCount = 0;
|
||||
for (Interval segmentGranularity : config.getSegmentGranularIntervals()) {
|
||||
DateTime bucket = segmentGranularity.getStart();
|
||||
|
||||
final Path partitionInfoPath = config.makeSegmentPartitionInfoPath(new Bucket(0, bucket, 0));
|
||||
if (fileSystem == null) {
|
||||
fileSystem = partitionInfoPath.getFileSystem(dimSelectionJob.getConfiguration());
|
||||
}
|
||||
if (fileSystem.exists(partitionInfoPath)) {
|
||||
List<ShardSpec> specs = config.jsonMapper.readValue(
|
||||
Utils.openInputStream(dimSelectionJob, partitionInfoPath), new TypeReference<List<ShardSpec>>()
|
||||
{
|
||||
}
|
||||
);
|
||||
|
||||
List<HadoopyShardSpec> actualSpecs = Lists.newArrayListWithExpectedSize(specs.size());
|
||||
for (int i = 0; i < specs.size(); ++i) {
|
||||
actualSpecs.add(new HadoopyShardSpec(specs.get(i), shardCount++));
|
||||
log.info("DateTime[%s], partition[%d], spec[%s]", bucket, i, actualSpecs.get(i));
|
||||
}
|
||||
|
||||
shardSpecs.put(bucket, actualSpecs);
|
||||
}
|
||||
else {
|
||||
log.info("Path[%s] didn't exist!?", partitionInfoPath);
|
||||
}
|
||||
}
|
||||
config.setShardSpecs(shardSpecs);
|
||||
|
||||
return true;
|
||||
} catch(Exception e) {
|
||||
throw Throwables.propagate(e);
|
||||
}
|
||||
}
|
||||
|
||||
public static class DeterminePartitionsGroupByMapper extends HadoopDruidIndexerMapper<Text, NullWritable>
|
||||
{
|
||||
@Override
|
||||
protected void innerMap(
|
||||
InputRow inputRow,
|
||||
Text text,
|
||||
Context context
|
||||
) throws IOException, InterruptedException
|
||||
{
|
||||
// Create group key
|
||||
// TODO -- There are more efficient ways to do this
|
||||
final Map<String, Set<String>> dims = Maps.newTreeMap();
|
||||
for(final String dim : inputRow.getDimensions()) {
|
||||
final Set<String> dimValues = ImmutableSortedSet.copyOf(inputRow.getDimension(dim));
|
||||
if(dimValues.size() > 0) {
|
||||
dims.put(dim, dimValues);
|
||||
}
|
||||
}
|
||||
final List<Object> groupKey = ImmutableList.of(
|
||||
getConfig().getRollupSpec().getRollupGranularity().truncate(inputRow.getTimestampFromEpoch()),
|
||||
dims
|
||||
);
|
||||
context.write(new Text(HadoopDruidIndexerConfig.jsonMapper.writeValueAsBytes(groupKey)), NullWritable.get());
|
||||
}
|
||||
}
|
||||
|
||||
public static class DeterminePartitionsGroupByReducer extends Reducer<Text, NullWritable, Text, NullWritable>
|
||||
{
|
||||
@Override
|
||||
protected void reduce(
|
||||
Text key,
|
||||
Iterable<NullWritable> values,
|
||||
Context context
|
||||
) throws IOException, InterruptedException
|
||||
{
|
||||
context.write(key, NullWritable.get());
|
||||
}
|
||||
}
|
||||
|
||||
public static class DeterminePartitionsDimSelectionMapper extends Mapper<Text, NullWritable, BytesWritable, Text>
|
||||
{
|
||||
private HadoopDruidIndexerConfig config;
|
||||
private String partitionDimension;
|
||||
private Parser parser;
|
||||
private Function<String, DateTime> timestampConverter;
|
||||
|
||||
@Override
|
||||
protected void setup(Context context)
|
||||
|
@ -188,49 +273,49 @@ public class DeterminePartitionsJob implements Jobby
|
|||
{
|
||||
config = HadoopDruidIndexerConfig.fromConfiguration(context.getConfiguration());
|
||||
partitionDimension = config.getPartitionDimension();
|
||||
parser = config.getDataSpec().getParser();
|
||||
timestampConverter = ParserUtils.createTimestampParser(config.getTimestampFormat());
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void map(
|
||||
LongWritable key, Text value, Context context
|
||||
Text key, NullWritable value, Context context
|
||||
) throws IOException, InterruptedException
|
||||
{
|
||||
Map<String, Object> values = parser.parse(value.toString());
|
||||
final DateTime timestamp;
|
||||
final String tsStr = (String) values.get(config.getTimestampColumnName());
|
||||
try {
|
||||
timestamp = timestampConverter.apply(tsStr);
|
||||
}
|
||||
catch(IllegalArgumentException e) {
|
||||
if(config.isIgnoreInvalidRows()) {
|
||||
context.getCounter(HadoopDruidIndexerConfig.IndexJobCounters.INVALID_ROW_COUNTER).increment(1);
|
||||
return; // we're ignoring this invalid row
|
||||
}
|
||||
else {
|
||||
throw e;
|
||||
}
|
||||
}
|
||||
final List<Object> timeAndDims =
|
||||
HadoopDruidIndexerConfig.jsonMapper.readValue(
|
||||
key.getBytes(), new TypeReference<List<Object>>() {}
|
||||
);
|
||||
|
||||
final DateTime timestamp = new DateTime(timeAndDims.get(0));
|
||||
final Map<String, Object> dims = (Map<String, Object>) timeAndDims.get(1);
|
||||
final Optional<Interval> maybeInterval = config.getGranularitySpec().bucketInterval(timestamp);
|
||||
if(maybeInterval.isPresent()) {
|
||||
final DateTime bucket = maybeInterval.get().getStart();
|
||||
final String outKey = keyJoiner.join(bucket.toString(), partitionDimension);
|
||||
|
||||
final Object dimValue = values.get(partitionDimension);
|
||||
if (! (dimValue instanceof String)) {
|
||||
throw new IAE("Cannot partition on a tag-style dimension[%s], line was[%s]", partitionDimension, value);
|
||||
if(!maybeInterval.isPresent()) {
|
||||
throw new ISE("WTF?! No bucket found for timestamp: %s", timestamp);
|
||||
}
|
||||
|
||||
final Interval interval = maybeInterval.get();
|
||||
final byte[] groupKey = interval.getStart().toString().getBytes(Charsets.UTF_8);
|
||||
|
||||
for(final Map.Entry<String, Object> dimAndValues : dims.entrySet()) {
|
||||
final String dim = dimAndValues.getKey();
|
||||
|
||||
if(partitionDimension == null || partitionDimension.equals(dim)) {
|
||||
final List<String> dimValues = (List<String>) dimAndValues.getValue();
|
||||
|
||||
if(dimValues.size() == 1) {
|
||||
// Emit this value.
|
||||
write(context, groupKey, new DimValueCount(dim, dimValues.get(0), 1));
|
||||
} else {
|
||||
// This dimension is unsuitable for partitioning. Poison it by emitting a negative value.
|
||||
write(context, groupKey, new DimValueCount(dim, "", -1));
|
||||
}
|
||||
}
|
||||
|
||||
final byte[] groupKey = outKey.getBytes(Charsets.UTF_8);
|
||||
write(context, groupKey, "", 1);
|
||||
write(context, groupKey, (String) dimValue, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private static abstract class DeterminePartitionsBaseReducer extends Reducer<BytesWritable, Text, BytesWritable, Text>
|
||||
private static abstract class DeterminePartitionsDimSelectionBaseReducer
|
||||
extends Reducer<BytesWritable, Text, BytesWritable, Text>
|
||||
{
|
||||
|
||||
protected static volatile HadoopDruidIndexerConfig config = null;
|
||||
|
@ -240,7 +325,7 @@ public class DeterminePartitionsJob implements Jobby
|
|||
throws IOException, InterruptedException
|
||||
{
|
||||
if (config == null) {
|
||||
synchronized (DeterminePartitionsBaseReducer.class) {
|
||||
synchronized (DeterminePartitionsDimSelectionBaseReducer.class) {
|
||||
if (config == null) {
|
||||
config = HadoopDruidIndexerConfig.fromConfiguration(context.getConfiguration());
|
||||
}
|
||||
|
@ -255,166 +340,277 @@ public class DeterminePartitionsJob implements Jobby
|
|||
{
|
||||
SortableBytes keyBytes = SortableBytes.fromBytesWritable(key);
|
||||
|
||||
final Iterable<Pair<String, Long>> combinedIterable = combineRows(values);
|
||||
final Iterable<DimValueCount> combinedIterable = combineRows(values);
|
||||
innerReduce(context, keyBytes, combinedIterable);
|
||||
}
|
||||
|
||||
protected abstract void innerReduce(
|
||||
Context context, SortableBytes keyBytes, Iterable<Pair<String, Long>> combinedIterable
|
||||
Context context, SortableBytes keyBytes, Iterable<DimValueCount> combinedIterable
|
||||
) throws IOException, InterruptedException;
|
||||
|
||||
private Iterable<Pair<String, Long>> combineRows(Iterable<Text> input)
|
||||
private Iterable<DimValueCount> combineRows(Iterable<Text> input)
|
||||
{
|
||||
return new CombiningIterable<Pair<String, Long>>(
|
||||
return new CombiningIterable<DimValueCount>(
|
||||
Iterables.transform(
|
||||
input,
|
||||
new Function<Text, Pair<String, Long>>()
|
||||
new Function<Text, DimValueCount>()
|
||||
{
|
||||
@Override
|
||||
public Pair<String, Long> apply(Text input)
|
||||
public DimValueCount apply(Text input)
|
||||
{
|
||||
Iterator<String> splits = tabSplitter.split(input.toString()).iterator();
|
||||
return new Pair<String, Long>(splits.next(), Long.parseLong(splits.next()));
|
||||
return DimValueCount.fromText(input);
|
||||
}
|
||||
}
|
||||
),
|
||||
new Comparator<Pair<String, Long>>()
|
||||
new Comparator<DimValueCount>()
|
||||
{
|
||||
@Override
|
||||
public int compare(Pair<String, Long> o1, Pair<String, Long> o2)
|
||||
public int compare(DimValueCount o1, DimValueCount o2)
|
||||
{
|
||||
return o1.lhs.compareTo(o2.lhs);
|
||||
return ComparisonChain.start().compare(o1.dim, o2.dim).compare(o1.value, o2.value).result();
|
||||
}
|
||||
},
|
||||
new BinaryFn<Pair<String, Long>, Pair<String, Long>, Pair<String, Long>>()
|
||||
new BinaryFn<DimValueCount, DimValueCount, DimValueCount>()
|
||||
{
|
||||
@Override
|
||||
public Pair<String, Long> apply(Pair<String, Long> arg1, Pair<String, Long> arg2)
|
||||
public DimValueCount apply(DimValueCount arg1, DimValueCount arg2)
|
||||
{
|
||||
if (arg2 == null) {
|
||||
return arg1;
|
||||
}
|
||||
|
||||
return new Pair<String, Long>(arg1.lhs, arg1.rhs + arg2.rhs);
|
||||
// Respect "poisoning" (negative values mean we can't use this dimension)
|
||||
final int newNumRows = (arg1.numRows >= 0 && arg2.numRows >= 0 ? arg1.numRows + arg2.numRows : -1);
|
||||
return new DimValueCount(arg1.dim, arg1.value, newNumRows);
|
||||
}
|
||||
}
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
public static class DeterminePartitionsCombiner extends DeterminePartitionsBaseReducer
|
||||
public static class DeterminePartitionsDimSelectionCombiner extends DeterminePartitionsDimSelectionBaseReducer
|
||||
{
|
||||
@Override
|
||||
protected void innerReduce(
|
||||
Context context, SortableBytes keyBytes, Iterable<Pair<String, Long>> combinedIterable
|
||||
Context context, SortableBytes keyBytes, Iterable<DimValueCount> combinedIterable
|
||||
) throws IOException, InterruptedException
|
||||
{
|
||||
for (Pair<String, Long> pair : combinedIterable) {
|
||||
write(context, keyBytes.getGroupKey(), pair.lhs, pair.rhs);
|
||||
for (DimValueCount dvc : combinedIterable) {
|
||||
write(context, keyBytes.getGroupKey(), dvc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static class DeterminePartitionsReducer extends DeterminePartitionsBaseReducer
|
||||
public static class DeterminePartitionsDimSelectionReducer extends DeterminePartitionsDimSelectionBaseReducer
|
||||
{
|
||||
String previousBoundary;
|
||||
long runningTotal;
|
||||
private static final double SHARD_COMBINE_THRESHOLD = 0.25;
|
||||
private static final double SHARD_OVERSIZE_THRESHOLD = 1.5;
|
||||
|
||||
@Override
|
||||
protected void innerReduce(
|
||||
Context context, SortableBytes keyBytes, Iterable<Pair<String, Long>> combinedIterable
|
||||
Context context, SortableBytes keyBytes, Iterable<DimValueCount> combinedIterable
|
||||
) throws IOException, InterruptedException
|
||||
{
|
||||
PeekingIterator<Pair<String, Long>> iterator = Iterators.peekingIterator(combinedIterable.iterator());
|
||||
Pair<String, Long> totalPair = iterator.next();
|
||||
PeekingIterator<DimValueCount> iterator = Iterators.peekingIterator(combinedIterable.iterator());
|
||||
|
||||
Preconditions.checkState(totalPair.lhs.equals(""), "Total pair value was[%s]!?", totalPair.lhs);
|
||||
long totalRows = totalPair.rhs;
|
||||
// "iterator" will take us over many candidate dimensions
|
||||
DimPartitions currentDimPartitions = null;
|
||||
DimPartition currentDimPartition = null;
|
||||
String currentDimPartitionStart = null;
|
||||
boolean currentDimSkip = false;
|
||||
|
||||
long numPartitions = Math.max(totalRows / config.getTargetPartitionSize(), 1);
|
||||
long expectedRowsPerPartition = totalRows / numPartitions;
|
||||
// We'll store possible partitions in here
|
||||
final Map<String, DimPartitions> dimPartitionss = Maps.newHashMap();
|
||||
|
||||
class PartitionsList extends ArrayList<ShardSpec>
|
||||
{
|
||||
}
|
||||
List<ShardSpec> partitions = new PartitionsList();
|
||||
while(iterator.hasNext()) {
|
||||
final DimValueCount dvc = iterator.next();
|
||||
|
||||
runningTotal = 0;
|
||||
Pair<String, Long> prev = null;
|
||||
previousBoundary = null;
|
||||
while (iterator.hasNext()) {
|
||||
Pair<String, Long> curr = iterator.next();
|
||||
|
||||
if (runningTotal > expectedRowsPerPartition) {
|
||||
Preconditions.checkNotNull(
|
||||
prev, "Prev[null] while runningTotal[%s] was > expectedRows[%s]!?", runningTotal, expectedRowsPerPartition
|
||||
);
|
||||
|
||||
addPartition(partitions, curr.lhs);
|
||||
if(currentDimPartitions == null || !currentDimPartitions.dim.equals(dvc.dim)) {
|
||||
// Starting a new dimension! Exciting!
|
||||
currentDimPartitions = new DimPartitions(dvc.dim);
|
||||
currentDimPartition = new DimPartition();
|
||||
currentDimPartitionStart = null;
|
||||
currentDimSkip = false;
|
||||
}
|
||||
|
||||
runningTotal += curr.rhs;
|
||||
prev = curr;
|
||||
// Respect poisoning
|
||||
if(!currentDimSkip && dvc.numRows < 0) {
|
||||
log.info("Cannot partition on multi-valued dimension: %s", dvc.dim);
|
||||
currentDimSkip = true;
|
||||
}
|
||||
|
||||
if(currentDimSkip) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// See if we need to cut a new partition ending immediately before this dimension value
|
||||
if(currentDimPartition.rows > 0 && currentDimPartition.rows + dvc.numRows >= config.getTargetPartitionSize()) {
|
||||
final ShardSpec shardSpec = new SingleDimensionShardSpec(
|
||||
currentDimPartitions.dim,
|
||||
currentDimPartitionStart,
|
||||
dvc.value,
|
||||
currentDimPartitions.partitions.size()
|
||||
);
|
||||
|
||||
log.info(
|
||||
"Adding possible shard with %,d rows and %,d unique values: %s",
|
||||
currentDimPartition.rows,
|
||||
currentDimPartition.cardinality,
|
||||
shardSpec
|
||||
);
|
||||
|
||||
currentDimPartition.shardSpec = shardSpec;
|
||||
currentDimPartitions.partitions.add(currentDimPartition);
|
||||
currentDimPartition = new DimPartition();
|
||||
currentDimPartitionStart = dvc.value;
|
||||
}
|
||||
|
||||
// Update counters
|
||||
currentDimPartition.cardinality ++;
|
||||
currentDimPartition.rows += dvc.numRows;
|
||||
|
||||
if(!iterator.hasNext() || !currentDimPartitions.dim.equals(iterator.peek().dim)) {
|
||||
// Finalize the current dimension
|
||||
|
||||
if(currentDimPartition.rows > 0) {
|
||||
// One more shard to go
|
||||
final ShardSpec shardSpec;
|
||||
|
||||
if (currentDimPartitions.partitions.isEmpty()) {
|
||||
shardSpec = new NoneShardSpec();
|
||||
} else {
|
||||
if(currentDimPartition.rows < config.getTargetPartitionSize() * SHARD_COMBINE_THRESHOLD) {
|
||||
// Combine with previous shard
|
||||
final DimPartition previousDimPartition = currentDimPartitions.partitions.remove(
|
||||
currentDimPartitions.partitions.size() - 1
|
||||
);
|
||||
|
||||
final SingleDimensionShardSpec previousShardSpec = (SingleDimensionShardSpec) previousDimPartition.shardSpec;
|
||||
|
||||
shardSpec = new SingleDimensionShardSpec(
|
||||
currentDimPartitions.dim,
|
||||
previousShardSpec.getStart(),
|
||||
null,
|
||||
previousShardSpec.getPartitionNum()
|
||||
);
|
||||
|
||||
log.info("Removing possible shard: %s", previousShardSpec);
|
||||
|
||||
currentDimPartition.rows += previousDimPartition.rows;
|
||||
currentDimPartition.cardinality += previousDimPartition.cardinality;
|
||||
} else {
|
||||
// Create new shard
|
||||
shardSpec = new SingleDimensionShardSpec(
|
||||
currentDimPartitions.dim,
|
||||
currentDimPartitionStart,
|
||||
null,
|
||||
currentDimPartitions.partitions.size()
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
log.info(
|
||||
"Adding possible shard with %,d rows and %,d unique values: %s",
|
||||
currentDimPartition.rows,
|
||||
currentDimPartition.cardinality,
|
||||
shardSpec
|
||||
);
|
||||
|
||||
currentDimPartition.shardSpec = shardSpec;
|
||||
currentDimPartitions.partitions.add(currentDimPartition);
|
||||
}
|
||||
|
||||
log.info(
|
||||
"Completed dimension[%s]: %,d possible shards with %,d unique values",
|
||||
currentDimPartitions.dim,
|
||||
currentDimPartitions.partitions.size(),
|
||||
currentDimPartitions.getCardinality()
|
||||
);
|
||||
|
||||
// Add ourselves to the partitions map
|
||||
dimPartitionss.put(currentDimPartitions.dim, currentDimPartitions);
|
||||
}
|
||||
}
|
||||
|
||||
if (partitions.isEmpty()) {
|
||||
partitions.add(new NoneShardSpec());
|
||||
} else if (((double) runningTotal / (double) expectedRowsPerPartition) < 0.25) {
|
||||
final SingleDimensionShardSpec lastSpec = (SingleDimensionShardSpec) partitions.remove(partitions.size() - 1);
|
||||
partitions.add(
|
||||
new SingleDimensionShardSpec(
|
||||
config.getPartitionDimension(),
|
||||
lastSpec.getStart(),
|
||||
null,
|
||||
lastSpec.getPartitionNum()
|
||||
)
|
||||
);
|
||||
} else {
|
||||
partitions.add(
|
||||
new SingleDimensionShardSpec(
|
||||
config.getPartitionDimension(),
|
||||
previousBoundary,
|
||||
null,
|
||||
partitions.size()
|
||||
)
|
||||
);
|
||||
// Choose best dimension
|
||||
if(dimPartitionss.isEmpty()) {
|
||||
throw new ISE("No suitable partitioning dimension found!");
|
||||
}
|
||||
|
||||
DateTime bucket = new DateTime(
|
||||
Iterables.get(keySplitter.split(new String(keyBytes.getGroupKey(), Charsets.UTF_8)), 0)
|
||||
);
|
||||
OutputStream out = Utils.makePathAndOutputStream(
|
||||
final int totalRows = dimPartitionss.values().iterator().next().getRows();
|
||||
|
||||
int maxCardinality = -1;
|
||||
DimPartitions maxCardinalityPartitions = null;
|
||||
|
||||
for(final DimPartitions dimPartitions : dimPartitionss.values()) {
|
||||
if(dimPartitions.getRows() != totalRows) {
|
||||
throw new ISE(
|
||||
"WTF?! Dimension[%s] row count %,d != expected row count %,d",
|
||||
dimPartitions.dim,
|
||||
dimPartitions.getRows(),
|
||||
totalRows
|
||||
);
|
||||
}
|
||||
|
||||
// Make sure none of these shards are oversized
|
||||
boolean oversized = false;
|
||||
for(final DimPartition partition : dimPartitions.partitions) {
|
||||
if(partition.rows > config.getTargetPartitionSize() * SHARD_OVERSIZE_THRESHOLD) {
|
||||
log.info("Dimension[%s] has an oversized shard: %s", dimPartitions.dim, partition.shardSpec);
|
||||
oversized = true;
|
||||
}
|
||||
}
|
||||
|
||||
if(oversized) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if(dimPartitions.getCardinality() > maxCardinality) {
|
||||
maxCardinality = dimPartitions.getCardinality();
|
||||
maxCardinalityPartitions = dimPartitions;
|
||||
}
|
||||
}
|
||||
|
||||
if(maxCardinalityPartitions == null) {
|
||||
throw new ISE("No suitable partitioning dimension found!");
|
||||
}
|
||||
|
||||
final DateTime bucket = new DateTime(new String(keyBytes.getGroupKey(), Charsets.UTF_8));
|
||||
final OutputStream out = Utils.makePathAndOutputStream(
|
||||
context, config.makeSegmentPartitionInfoPath(new Bucket(0, bucket, 0)), config.isOverwriteFiles()
|
||||
);
|
||||
|
||||
for (ShardSpec partition : partitions) {
|
||||
log.info("%s", partition);
|
||||
final List<ShardSpec> chosenShardSpecs = Lists.transform(
|
||||
maxCardinalityPartitions.partitions, new Function<DimPartition, ShardSpec>()
|
||||
{
|
||||
@Override
|
||||
public ShardSpec apply(DimPartition dimPartition)
|
||||
{
|
||||
return dimPartition.shardSpec;
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
log.info("Chosen partitions:");
|
||||
for (ShardSpec shardSpec : chosenShardSpecs) {
|
||||
log.info(" %s", shardSpec);
|
||||
}
|
||||
|
||||
try {
|
||||
config.jsonMapper.writeValue(out, partitions);
|
||||
// For some reason this used to work without writerWithType, but now it appears to forget to write "type"
|
||||
// info for the ShardSpecs (so they cannot be deserialized).
|
||||
HadoopDruidIndexerConfig.jsonMapper.writerWithType(new TypeReference<List<ShardSpec>>() {}).writeValue(
|
||||
out,
|
||||
chosenShardSpecs
|
||||
);
|
||||
}
|
||||
finally {
|
||||
Closeables.close(out, false);
|
||||
}
|
||||
}
|
||||
|
||||
private void addPartition(List<ShardSpec> partitions, String boundary)
|
||||
{
|
||||
partitions.add(
|
||||
new SingleDimensionShardSpec(
|
||||
config.getPartitionDimension(),
|
||||
previousBoundary,
|
||||
boundary,
|
||||
partitions.size()
|
||||
)
|
||||
);
|
||||
previousBoundary = boundary;
|
||||
runningTotal = 0;
|
||||
}
|
||||
}
|
||||
|
||||
public static class DeterminePartitionsOutputFormat extends FileOutputFormat
|
||||
public static class DeterminePartitionsDimSelectionOutputFormat extends FileOutputFormat
|
||||
{
|
||||
@Override
|
||||
public RecordWriter getRecordWriter(final TaskAttemptContext job) throws IOException, InterruptedException
|
||||
|
@ -444,17 +640,81 @@ public class DeterminePartitionsJob implements Jobby
|
|||
}
|
||||
}
|
||||
|
||||
private static class DimPartitions
|
||||
{
|
||||
public final String dim;
|
||||
public final List<DimPartition> partitions = Lists.newArrayList();
|
||||
|
||||
private DimPartitions(String dim)
|
||||
{
|
||||
this.dim = dim;
|
||||
}
|
||||
|
||||
public int getCardinality()
|
||||
{
|
||||
int sum = 0;
|
||||
for(final DimPartition dimPartition : partitions) {
|
||||
sum += dimPartition.cardinality;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
public int getRows()
|
||||
{
|
||||
int sum = 0;
|
||||
for(final DimPartition dimPartition : partitions) {
|
||||
sum += dimPartition.rows;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
}
|
||||
|
||||
private static class DimPartition
|
||||
{
|
||||
public ShardSpec shardSpec = null;
|
||||
public int cardinality = 0;
|
||||
public int rows = 0;
|
||||
}
|
||||
|
||||
private static class DimValueCount
|
||||
{
|
||||
public final String dim;
|
||||
public final String value;
|
||||
public final int numRows;
|
||||
|
||||
private DimValueCount(String dim, String value, int numRows)
|
||||
{
|
||||
this.dim = dim;
|
||||
this.value = value;
|
||||
this.numRows = numRows;
|
||||
}
|
||||
|
||||
public Text toText()
|
||||
{
|
||||
return new Text(tabJoiner.join(dim, String.valueOf(numRows), value));
|
||||
}
|
||||
|
||||
public static DimValueCount fromText(Text text)
|
||||
{
|
||||
final Iterator<String> splits = tabSplitter.limit(3).split(text.toString()).iterator();
|
||||
final String dim = splits.next();
|
||||
final int numRows = Integer.parseInt(splits.next());
|
||||
final String value = splits.next();
|
||||
|
||||
return new DimValueCount(dim, value, numRows);
|
||||
}
|
||||
}
|
||||
|
||||
private static void write(
|
||||
TaskInputOutputContext<? extends Writable, ? extends Writable, BytesWritable, Text> context,
|
||||
final byte[] groupKey,
|
||||
String value,
|
||||
long numRows
|
||||
DimValueCount dimValueCount
|
||||
)
|
||||
throws IOException, InterruptedException
|
||||
{
|
||||
context.write(
|
||||
new SortableBytes(groupKey, value.getBytes(HadoopDruidIndexerConfig.javaNativeCharset)).toBytesWritable(),
|
||||
new Text(tabJoiner.join(value, numRows))
|
||||
new SortableBytes(groupKey, tabJoiner.join(dimValueCount.dim, dimValueCount.value).getBytes(HadoopDruidIndexerConfig.javaNativeCharset)).toBytesWritable(),
|
||||
dimValueCount.toText()
|
||||
);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -34,15 +34,19 @@ import com.metamx.common.MapUtils;
|
|||
import com.metamx.common.guava.FunctionalIterable;
|
||||
import com.metamx.common.logger.Logger;
|
||||
import com.metamx.druid.RegisteringNode;
|
||||
import com.metamx.druid.aggregation.AggregatorFactory;
|
||||
import com.metamx.druid.client.DataSegment;
|
||||
import com.metamx.druid.index.v1.serde.Registererer;
|
||||
import com.metamx.druid.indexer.data.DataSpec;
|
||||
import com.metamx.druid.indexer.data.StringInputRowParser;
|
||||
import com.metamx.druid.indexer.data.TimestampSpec;
|
||||
import com.metamx.druid.indexer.data.ToLowercaseDataSpec;
|
||||
import com.metamx.druid.indexer.granularity.GranularitySpec;
|
||||
import com.metamx.druid.indexer.granularity.UniformGranularitySpec;
|
||||
import com.metamx.druid.indexer.path.PathSpec;
|
||||
import com.metamx.druid.indexer.rollup.DataRollupSpec;
|
||||
import com.metamx.druid.indexer.updater.UpdaterJobSpec;
|
||||
import com.metamx.druid.input.InputRow;
|
||||
import com.metamx.druid.jackson.DefaultObjectMapper;
|
||||
import com.metamx.druid.shard.ShardSpec;
|
||||
import com.metamx.druid.utils.JodaUtils;
|
||||
|
@ -60,8 +64,6 @@ import org.joda.time.format.ISODateTimeFormat;
|
|||
import javax.annotation.Nullable;
|
||||
import java.io.File;
|
||||
import java.io.IOException;
|
||||
import java.net.URI;
|
||||
import java.net.URISyntaxException;
|
||||
import java.nio.charset.Charset;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
|
@ -237,6 +239,11 @@ public class HadoopDruidIndexerConfig
|
|||
this.timestampFormat = timestampFormat;
|
||||
}
|
||||
|
||||
public TimestampSpec getTimestampSpec()
|
||||
{
|
||||
return new TimestampSpec(timestampColumnName, timestampFormat);
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public DataSpec getDataSpec()
|
||||
{
|
||||
|
@ -248,6 +255,32 @@ public class HadoopDruidIndexerConfig
|
|||
this.dataSpec = new ToLowercaseDataSpec(dataSpec);
|
||||
}
|
||||
|
||||
public StringInputRowParser getParser()
|
||||
{
|
||||
final List<String> dimensionExclusions;
|
||||
|
||||
if(getDataSpec().hasCustomDimensions()) {
|
||||
dimensionExclusions = null;
|
||||
} else {
|
||||
dimensionExclusions = Lists.newArrayList();
|
||||
dimensionExclusions.add(getTimestampColumnName());
|
||||
dimensionExclusions.addAll(
|
||||
Lists.transform(
|
||||
getRollupSpec().getAggs(), new Function<AggregatorFactory, String>()
|
||||
{
|
||||
@Override
|
||||
public String apply(AggregatorFactory aggregatorFactory)
|
||||
{
|
||||
return aggregatorFactory.getName();
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
return new StringInputRowParser(getTimestampSpec(), getDataSpec(), dimensionExclusions);
|
||||
}
|
||||
|
||||
@Deprecated
|
||||
@JsonProperty
|
||||
public void setSegmentGranularity(Granularity segmentGranularity)
|
||||
|
@ -335,7 +368,7 @@ public class HadoopDruidIndexerConfig
|
|||
|
||||
public boolean partitionByDimension()
|
||||
{
|
||||
return partitionDimension != null;
|
||||
return targetPartitionSize != null;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
|
@ -447,21 +480,15 @@ public class HadoopDruidIndexerConfig
|
|||
********************************************/
|
||||
|
||||
/**
|
||||
* Get the proper bucket for this "row"
|
||||
* Get the proper bucket for some input row.
|
||||
*
|
||||
* @param theMap a Map that represents a "row", keys are column names, values are, well, values
|
||||
* @param inputRow an InputRow
|
||||
*
|
||||
* @return the Bucket that this row belongs to
|
||||
*/
|
||||
public Optional<Bucket> getBucket(Map<String, String> theMap)
|
||||
public Optional<Bucket> getBucket(InputRow inputRow)
|
||||
{
|
||||
final Optional<Interval> timeBucket = getGranularitySpec().bucketInterval(
|
||||
new DateTime(
|
||||
theMap.get(
|
||||
getTimestampColumnName()
|
||||
)
|
||||
)
|
||||
);
|
||||
final Optional<Interval> timeBucket = getGranularitySpec().bucketInterval(new DateTime(inputRow.getTimestampFromEpoch()));
|
||||
if (!timeBucket.isPresent()) {
|
||||
return Optional.absent();
|
||||
}
|
||||
|
@ -473,7 +500,7 @@ public class HadoopDruidIndexerConfig
|
|||
|
||||
for (final HadoopyShardSpec hadoopyShardSpec : shards) {
|
||||
final ShardSpec actualSpec = hadoopyShardSpec.getActualSpec();
|
||||
if (actualSpec.isInChunk(theMap)) {
|
||||
if (actualSpec.isInChunk(inputRow)) {
|
||||
return Optional.of(
|
||||
new Bucket(
|
||||
hadoopyShardSpec.getShardNum(),
|
||||
|
@ -484,7 +511,7 @@ public class HadoopDruidIndexerConfig
|
|||
}
|
||||
}
|
||||
|
||||
throw new ISE("row[%s] doesn't fit in any shard[%s]", theMap, shards);
|
||||
throw new ISE("row[%s] doesn't fit in any shard[%s]", inputRow, shards);
|
||||
}
|
||||
|
||||
public Set<Interval> getSegmentGranularIntervals()
|
||||
|
@ -566,6 +593,11 @@ public class HadoopDruidIndexerConfig
|
|||
return new Path(makeIntermediatePath(), "segmentDescriptorInfo");
|
||||
}
|
||||
|
||||
public Path makeGroupedDataDir()
|
||||
{
|
||||
return new Path(makeIntermediatePath(), "groupedData");
|
||||
}
|
||||
|
||||
public Path makeDescriptorInfoPath(DataSegment segment)
|
||||
{
|
||||
return new Path(makeDescriptorInfoDir(), String.format("%s.json", segment.getIdentifier().replace(":", "")));
|
||||
|
@ -626,10 +658,5 @@ public class HadoopDruidIndexerConfig
|
|||
|
||||
final int nIntervals = getIntervals().size();
|
||||
Preconditions.checkArgument(nIntervals > 0, "intervals.size()[%s] <= 0", nIntervals);
|
||||
|
||||
if (partitionByDimension()) {
|
||||
Preconditions.checkNotNull(partitionDimension);
|
||||
Preconditions.checkNotNull(targetPartitionSize);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,69 @@
|
|||
package com.metamx.druid.indexer;
|
||||
|
||||
import com.metamx.common.RE;
|
||||
import com.metamx.druid.indexer.data.StringInputRowParser;
|
||||
import com.metamx.druid.input.InputRow;
|
||||
import org.apache.hadoop.io.LongWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapreduce.Mapper;
|
||||
import org.joda.time.DateTime;
|
||||
|
||||
import java.io.IOException;
|
||||
|
||||
public class HadoopDruidIndexerMapper<KEYOUT, VALUEOUT> extends Mapper<LongWritable, Text, KEYOUT, VALUEOUT>
|
||||
{
|
||||
private HadoopDruidIndexerConfig config;
|
||||
private StringInputRowParser parser;
|
||||
|
||||
@Override
|
||||
protected void setup(Context context)
|
||||
throws IOException, InterruptedException
|
||||
{
|
||||
config = HadoopDruidIndexerConfig.fromConfiguration(context.getConfiguration());
|
||||
parser = config.getParser();
|
||||
}
|
||||
|
||||
public HadoopDruidIndexerConfig getConfig()
|
||||
{
|
||||
return config;
|
||||
}
|
||||
|
||||
public StringInputRowParser getParser()
|
||||
{
|
||||
return parser;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void map(
|
||||
LongWritable key, Text value, Context context
|
||||
) throws IOException, InterruptedException
|
||||
{
|
||||
try {
|
||||
final InputRow inputRow;
|
||||
try {
|
||||
inputRow = parser.parse(value.toString());
|
||||
}
|
||||
catch (IllegalArgumentException e) {
|
||||
if (config.isIgnoreInvalidRows()) {
|
||||
context.getCounter(HadoopDruidIndexerConfig.IndexJobCounters.INVALID_ROW_COUNTER).increment(1);
|
||||
return; // we're ignoring this invalid row
|
||||
} else {
|
||||
throw e;
|
||||
}
|
||||
}
|
||||
|
||||
if(config.getGranularitySpec().bucketInterval(new DateTime(inputRow.getTimestampFromEpoch())).isPresent()) {
|
||||
innerMap(inputRow, value, context);
|
||||
}
|
||||
}
|
||||
catch (RuntimeException e) {
|
||||
throw new RE(e, "Failure on row[%s]", value);
|
||||
}
|
||||
}
|
||||
|
||||
protected void innerMap(InputRow inputRow, Text text, Context context)
|
||||
throws IOException, InterruptedException
|
||||
{
|
||||
// no-op, meant to be overridden
|
||||
}
|
||||
}
|
|
@ -19,31 +19,25 @@
|
|||
|
||||
package com.metamx.druid.indexer;
|
||||
|
||||
import com.google.common.base.Function;
|
||||
import com.google.common.base.Optional;
|
||||
import com.google.common.base.Predicate;
|
||||
import com.google.common.base.Throwables;
|
||||
import com.google.common.collect.ImmutableMap;
|
||||
import com.google.common.collect.Iterables;
|
||||
import com.google.common.collect.Lists;
|
||||
import com.google.common.collect.Maps;
|
||||
import com.google.common.collect.Sets;
|
||||
import com.google.common.io.Closeables;
|
||||
import com.google.common.primitives.Longs;
|
||||
import com.metamx.common.ISE;
|
||||
import com.metamx.common.RE;
|
||||
import com.metamx.common.guava.FunctionalIterable;
|
||||
import com.metamx.common.logger.Logger;
|
||||
import com.metamx.common.parsers.Parser;
|
||||
import com.metamx.common.parsers.ParserUtils;
|
||||
import com.metamx.druid.aggregation.AggregatorFactory;
|
||||
import com.metamx.druid.client.DataSegment;
|
||||
import com.metamx.druid.index.v1.IncrementalIndex;
|
||||
import com.metamx.druid.index.v1.IndexIO;
|
||||
import com.metamx.druid.index.v1.IndexMerger;
|
||||
import com.metamx.druid.index.v1.MMappedIndex;
|
||||
import com.metamx.druid.indexer.data.StringInputRowParser;
|
||||
import com.metamx.druid.indexer.rollup.DataRollupSpec;
|
||||
import com.metamx.druid.input.MapBasedInputRow;
|
||||
import com.metamx.druid.input.InputRow;
|
||||
import org.apache.commons.io.FileUtils;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.FSDataOutputStream;
|
||||
|
@ -53,13 +47,11 @@ import org.apache.hadoop.fs.LocalFileSystem;
|
|||
import org.apache.hadoop.fs.Path;
|
||||
import org.apache.hadoop.fs.s3native.NativeS3FileSystem;
|
||||
import org.apache.hadoop.io.BytesWritable;
|
||||
import org.apache.hadoop.io.LongWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapred.InvalidJobConfException;
|
||||
import org.apache.hadoop.mapreduce.Counter;
|
||||
import org.apache.hadoop.mapreduce.Job;
|
||||
import org.apache.hadoop.mapreduce.JobContext;
|
||||
import org.apache.hadoop.mapreduce.Mapper;
|
||||
import org.apache.hadoop.mapreduce.Partitioner;
|
||||
import org.apache.hadoop.mapreduce.Reducer;
|
||||
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
|
||||
|
@ -68,7 +60,6 @@ import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
|
|||
import org.joda.time.DateTime;
|
||||
import org.joda.time.Interval;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
import java.io.BufferedOutputStream;
|
||||
import java.io.File;
|
||||
import java.io.FileInputStream;
|
||||
|
@ -78,7 +69,6 @@ import java.net.URI;
|
|||
import java.nio.ByteBuffer;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Set;
|
||||
import java.util.zip.ZipEntry;
|
||||
import java.util.zip.ZipOutputStream;
|
||||
|
@ -127,7 +117,7 @@ public class IndexGeneratorJob implements Jobby
|
|||
job.setMapperClass(IndexGeneratorMapper.class);
|
||||
job.setMapOutputValueClass(Text.class);
|
||||
|
||||
SortableBytes.useSortableBytesAsKey(job);
|
||||
SortableBytes.useSortableBytesAsMapOutputKey(job);
|
||||
|
||||
job.setNumReduceTasks(Iterables.size(config.getAllBuckets()));
|
||||
job.setPartitionerClass(IndexGeneratorPartitioner.class);
|
||||
|
@ -159,75 +149,29 @@ public class IndexGeneratorJob implements Jobby
|
|||
}
|
||||
}
|
||||
|
||||
public static class IndexGeneratorMapper extends Mapper<LongWritable, Text, BytesWritable, Text>
|
||||
public static class IndexGeneratorMapper extends HadoopDruidIndexerMapper<BytesWritable, Text>
|
||||
{
|
||||
private HadoopDruidIndexerConfig config;
|
||||
private Parser<String, Object> parser;
|
||||
private Function<String, DateTime> timestampConverter;
|
||||
|
||||
@Override
|
||||
protected void setup(Context context)
|
||||
throws IOException, InterruptedException
|
||||
{
|
||||
config = HadoopDruidIndexerConfig.fromConfiguration(context.getConfiguration());
|
||||
parser = config.getDataSpec().getParser();
|
||||
timestampConverter = ParserUtils.createTimestampParser(config.getTimestampFormat());
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void map(
|
||||
LongWritable key, Text value, Context context
|
||||
protected void innerMap(
|
||||
InputRow inputRow,
|
||||
Text text,
|
||||
Context context
|
||||
) throws IOException, InterruptedException
|
||||
{
|
||||
// Group by bucket, sort by timestamp
|
||||
final Optional<Bucket> bucket = getConfig().getBucket(inputRow);
|
||||
|
||||
try {
|
||||
final Map<String, Object> values = parser.parse(value.toString());
|
||||
|
||||
final String tsStr = (String) values.get(config.getTimestampColumnName());
|
||||
final DateTime timestamp;
|
||||
try {
|
||||
timestamp = timestampConverter.apply(tsStr);
|
||||
}
|
||||
catch (IllegalArgumentException e) {
|
||||
if (config.isIgnoreInvalidRows()) {
|
||||
context.getCounter(HadoopDruidIndexerConfig.IndexJobCounters.INVALID_ROW_COUNTER).increment(1);
|
||||
return; // we're ignoring this invalid row
|
||||
} else {
|
||||
throw e;
|
||||
}
|
||||
}
|
||||
|
||||
Optional<Bucket> bucket = config.getBucket(
|
||||
Maps.transformEntries(
|
||||
values,
|
||||
new Maps.EntryTransformer<String, Object, String>()
|
||||
{
|
||||
@Override
|
||||
public String transformEntry(@Nullable String key, @Nullable Object value)
|
||||
{
|
||||
if (key.equalsIgnoreCase(config.getTimestampColumnName())) {
|
||||
return timestamp.toString();
|
||||
}
|
||||
return value.toString();
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
if (bucket.isPresent()) {
|
||||
// Group by bucket, sort by timestamp
|
||||
context.write(
|
||||
new SortableBytes(
|
||||
bucket.get().toGroupKey(),
|
||||
Longs.toByteArray(timestamp.getMillis())
|
||||
).toBytesWritable(),
|
||||
value
|
||||
);
|
||||
}
|
||||
}
|
||||
catch (RuntimeException e) {
|
||||
throw new RE(e, "Failure on row[%s]", value);
|
||||
if(!bucket.isPresent()) {
|
||||
throw new ISE("WTF?! No bucket found for row: %s", inputRow);
|
||||
}
|
||||
|
||||
context.write(
|
||||
new SortableBytes(
|
||||
bucket.get().toGroupKey(),
|
||||
Longs.toByteArray(inputRow.getTimestampFromEpoch())
|
||||
).toBytesWritable(),
|
||||
text
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -253,8 +197,7 @@ public class IndexGeneratorJob implements Jobby
|
|||
{
|
||||
private HadoopDruidIndexerConfig config;
|
||||
private List<String> metricNames = Lists.newArrayList();
|
||||
private Function<String, DateTime> timestampConverter;
|
||||
private Parser parser;
|
||||
private StringInputRowParser parser;
|
||||
|
||||
@Override
|
||||
protected void setup(Context context)
|
||||
|
@ -265,8 +208,8 @@ public class IndexGeneratorJob implements Jobby
|
|||
for (AggregatorFactory factory : config.getRollupSpec().getAggs()) {
|
||||
metricNames.add(factory.getName().toLowerCase());
|
||||
}
|
||||
timestampConverter = ParserUtils.createTimestampParser(config.getTimestampFormat());
|
||||
parser = config.getDataSpec().getParser();
|
||||
|
||||
parser = config.getParser();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -299,32 +242,10 @@ public class IndexGeneratorJob implements Jobby
|
|||
|
||||
for (final Text value : values) {
|
||||
context.progress();
|
||||
Map<String, Object> event = parser.parse(value.toString());
|
||||
final long timestamp = timestampConverter.apply((String) event.get(config.getTimestampColumnName()))
|
||||
.getMillis();
|
||||
List<String> dimensionNames =
|
||||
config.getDataSpec().hasCustomDimensions() ?
|
||||
config.getDataSpec().getDimensions() :
|
||||
Lists.newArrayList(
|
||||
FunctionalIterable.create(event.keySet())
|
||||
.filter(
|
||||
new Predicate<String>()
|
||||
{
|
||||
@Override
|
||||
public boolean apply(@Nullable String input)
|
||||
{
|
||||
return !(metricNames.contains(input.toLowerCase())
|
||||
|| config.getTimestampColumnName()
|
||||
.equalsIgnoreCase(input));
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
allDimensionNames.addAll(dimensionNames);
|
||||
final InputRow inputRow = parser.parse(value.toString());
|
||||
allDimensionNames.addAll(inputRow.getDimensions());
|
||||
|
||||
int numRows = index.add(
|
||||
new MapBasedInputRow(timestamp, dimensionNames, event)
|
||||
);
|
||||
int numRows = index.add(inputRow);
|
||||
++lineCount;
|
||||
|
||||
if (numRows >= rollupSpec.rowFlushBoundary) {
|
||||
|
|
|
@ -102,7 +102,7 @@ public class SortableBytes
|
|||
);
|
||||
}
|
||||
|
||||
public static void useSortableBytesAsKey(Job job)
|
||||
public static void useSortableBytesAsMapOutputKey(Job job)
|
||||
{
|
||||
job.setMapOutputKeyClass(BytesWritable.class);
|
||||
job.setGroupingComparatorClass(SortableBytesGroupingComparator.class);
|
||||
|
|
Loading…
Reference in New Issue