Data loader (sampler component) - Kafka/Kinesis samplers (#7566)

* implement Kafka/Kinesis sampler

* add KafkaSamplerSpecTest and KinesisSamplerSpecTest

* code review changes
This commit is contained in:
David Lim 2019-05-16 21:26:23 -06:00 committed by Clint Wylie
parent ec0b7787cf
commit d38457933f
7 changed files with 969 additions and 2 deletions

View File

@ -48,7 +48,8 @@ public class KafkaIndexTaskModule implements DruidModule
// (Older versions of Druid didn't specify a type name and got this one by default.)
new NamedType(KafkaIndexTaskTuningConfig.class, "KafkaTuningConfig"),
new NamedType(KafkaSupervisorTuningConfig.class, "kafka"),
new NamedType(KafkaSupervisorSpec.class, "kafka")
new NamedType(KafkaSupervisorSpec.class, "kafka"),
new NamedType(KafkaSamplerSpec.class, "kafka")
)
);
}

View File

@ -0,0 +1,91 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.indexing.kafka;
import com.fasterxml.jackson.annotation.JacksonInject;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.druid.data.input.Firehose;
import org.apache.druid.data.input.impl.InputRowParser;
import org.apache.druid.indexing.kafka.supervisor.KafkaSupervisorIOConfig;
import org.apache.druid.indexing.kafka.supervisor.KafkaSupervisorSpec;
import org.apache.druid.indexing.overlord.sampler.FirehoseSampler;
import org.apache.druid.indexing.overlord.sampler.SamplerConfig;
import org.apache.druid.indexing.seekablestream.SeekableStreamSamplerSpec;
import org.apache.druid.indexing.seekablestream.common.RecordSupplier;
import org.apache.kafka.common.serialization.ByteArrayDeserializer;
import java.util.HashMap;
import java.util.Map;
public class KafkaSamplerSpec extends SeekableStreamSamplerSpec
{
private final ObjectMapper objectMapper;
@JsonCreator
public KafkaSamplerSpec(
@JsonProperty("spec") final KafkaSupervisorSpec ingestionSpec,
@JsonProperty("samplerConfig") final SamplerConfig samplerConfig,
@JacksonInject FirehoseSampler firehoseSampler,
@JacksonInject ObjectMapper objectMapper
)
{
super(ingestionSpec, samplerConfig, firehoseSampler);
this.objectMapper = objectMapper;
}
@Override
protected Firehose getFirehose(InputRowParser parser)
{
return new KafkaSamplerFirehose(parser);
}
protected class KafkaSamplerFirehose extends SeekableStreamSamplerFirehose
{
private KafkaSamplerFirehose(InputRowParser parser)
{
super(parser);
}
@Override
protected RecordSupplier getRecordSupplier()
{
ClassLoader currCtxCl = Thread.currentThread().getContextClassLoader();
try {
Thread.currentThread().setContextClassLoader(getClass().getClassLoader());
final Map<String, Object> props = new HashMap<>(((KafkaSupervisorIOConfig) ioConfig).getConsumerProperties());
props.put("enable.auto.commit", "false");
props.put("auto.offset.reset", "none");
props.put("key.deserializer", ByteArrayDeserializer.class.getName());
props.put("value.deserializer", ByteArrayDeserializer.class.getName());
props.put("request.timeout.ms", Integer.toString(samplerConfig.getTimeoutMs()));
return new KafkaRecordSupplier(props, objectMapper);
}
finally {
Thread.currentThread().setContextClassLoader(currCtxCl);
}
}
}
}

View File

@ -0,0 +1,270 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.indexing.kafka;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import org.apache.curator.test.TestingCluster;
import org.apache.druid.client.cache.MapCache;
import org.apache.druid.data.input.impl.DimensionsSpec;
import org.apache.druid.data.input.impl.FloatDimensionSchema;
import org.apache.druid.data.input.impl.JSONParseSpec;
import org.apache.druid.data.input.impl.LongDimensionSchema;
import org.apache.druid.data.input.impl.StringDimensionSchema;
import org.apache.druid.data.input.impl.StringInputRowParser;
import org.apache.druid.data.input.impl.TimestampSpec;
import org.apache.druid.indexing.kafka.supervisor.KafkaSupervisorIOConfig;
import org.apache.druid.indexing.kafka.supervisor.KafkaSupervisorSpec;
import org.apache.druid.indexing.kafka.test.TestBroker;
import org.apache.druid.indexing.overlord.sampler.FirehoseSampler;
import org.apache.druid.indexing.overlord.sampler.SamplerCache;
import org.apache.druid.indexing.overlord.sampler.SamplerConfig;
import org.apache.druid.indexing.overlord.sampler.SamplerResponse;
import org.apache.druid.java.util.common.StringUtils;
import org.apache.druid.java.util.common.granularity.Granularities;
import org.apache.druid.java.util.common.parsers.JSONPathSpec;
import org.apache.druid.query.aggregation.AggregatorFactory;
import org.apache.druid.query.aggregation.CountAggregatorFactory;
import org.apache.druid.query.aggregation.DoubleSumAggregatorFactory;
import org.apache.druid.segment.TestHelper;
import org.apache.druid.segment.indexing.DataSchema;
import org.apache.druid.segment.indexing.granularity.UniformGranularitySpec;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.junit.AfterClass;
import org.junit.Assert;
import org.junit.BeforeClass;
import org.junit.Test;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
public class KafkaSamplerSpecTest
{
private static final ObjectMapper objectMapper = TestHelper.makeJsonMapper();
private static final String TOPIC = "sampling";
private static final DataSchema DATA_SCHEMA = new DataSchema(
"test_ds",
objectMapper.convertValue(
new StringInputRowParser(
new JSONParseSpec(
new TimestampSpec("timestamp", "iso", null),
new DimensionsSpec(
Arrays.asList(
new StringDimensionSchema("dim1"),
new StringDimensionSchema("dim1t"),
new StringDimensionSchema("dim2"),
new LongDimensionSchema("dimLong"),
new FloatDimensionSchema("dimFloat")
),
null,
null
),
new JSONPathSpec(true, ImmutableList.of()),
ImmutableMap.of()
),
StandardCharsets.UTF_8.name()
),
Map.class
),
new AggregatorFactory[]{
new DoubleSumAggregatorFactory("met1sum", "met1"),
new CountAggregatorFactory("rows")
},
new UniformGranularitySpec(Granularities.DAY, Granularities.NONE, null),
null,
objectMapper
);
private static TestingCluster zkServer;
private static TestBroker kafkaServer;
private static List<ProducerRecord<byte[], byte[]>> generateRecords(String topic)
{
return ImmutableList.of(
new ProducerRecord<>(topic, 0, null, jb("2008", "a", "y", "10", "20.0", "1.0")),
new ProducerRecord<>(topic, 0, null, jb("2009", "b", "y", "10", "20.0", "1.0")),
new ProducerRecord<>(topic, 0, null, jb("2010", "c", "y", "10", "20.0", "1.0")),
new ProducerRecord<>(topic, 0, null, jb("246140482-04-24T15:36:27.903Z", "x", "z", "10", "20.0", "1.0")),
new ProducerRecord<>(topic, 0, null, StringUtils.toUtf8("unparseable")),
new ProducerRecord<>(topic, 0, null, null)
);
}
@BeforeClass
public static void setupClass() throws Exception
{
zkServer = new TestingCluster(1);
zkServer.start();
kafkaServer = new TestBroker(zkServer.getConnectString(), null, 1, ImmutableMap.of("num.partitions", "2"));
kafkaServer.start();
}
@AfterClass
public static void tearDownClass() throws Exception
{
kafkaServer.close();
zkServer.stop();
}
@Test(timeout = 30_000L)
public void testSample()
{
insertData(generateRecords(TOPIC));
KafkaSupervisorSpec supervisorSpec = new KafkaSupervisorSpec(
DATA_SCHEMA,
null,
new KafkaSupervisorIOConfig(
TOPIC,
null,
null,
null,
kafkaServer.consumerProperties(),
null,
null,
null,
true,
null,
null,
null
),
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
);
KafkaSamplerSpec samplerSpec = new KafkaSamplerSpec(
supervisorSpec,
new SamplerConfig(5, null, null, null),
new FirehoseSampler(objectMapper, new SamplerCache(MapCache.create(100000))),
objectMapper
);
SamplerResponse response = samplerSpec.sample();
Assert.assertNotNull(response.getCacheKey());
Assert.assertEquals(5, (int) response.getNumRowsRead());
Assert.assertEquals(3, (int) response.getNumRowsIndexed());
Assert.assertEquals(5, response.getData().size());
Iterator<SamplerResponse.SamplerResponseRow> it = response.getData().iterator();
Assert.assertEquals(new SamplerResponse.SamplerResponseRow(
"{\"timestamp\":\"2008\",\"dim1\":\"a\",\"dim2\":\"y\",\"dimLong\":\"10\",\"dimFloat\":\"20.0\",\"met1\":\"1.0\"}",
ImmutableMap.<String, Object>builder()
.put("__time", 1199145600000L)
.put("dim1", "a")
.put("dim2", "y")
.put("dimLong", 10L)
.put("dimFloat", 20.0F)
.put("rows", 1L)
.put("met1sum", 1.0)
.build(),
null,
null
), it.next());
Assert.assertEquals(new SamplerResponse.SamplerResponseRow(
"{\"timestamp\":\"2009\",\"dim1\":\"b\",\"dim2\":\"y\",\"dimLong\":\"10\",\"dimFloat\":\"20.0\",\"met1\":\"1.0\"}",
ImmutableMap.<String, Object>builder()
.put("__time", 1230768000000L)
.put("dim1", "b")
.put("dim2", "y")
.put("dimLong", 10L)
.put("dimFloat", 20.0F)
.put("rows", 1L)
.put("met1sum", 1.0)
.build(),
null,
null
), it.next());
Assert.assertEquals(new SamplerResponse.SamplerResponseRow(
"{\"timestamp\":\"2010\",\"dim1\":\"c\",\"dim2\":\"y\",\"dimLong\":\"10\",\"dimFloat\":\"20.0\",\"met1\":\"1.0\"}",
ImmutableMap.<String, Object>builder()
.put("__time", 1262304000000L)
.put("dim1", "c")
.put("dim2", "y")
.put("dimLong", 10L)
.put("dimFloat", 20.0F)
.put("rows", 1L)
.put("met1sum", 1.0)
.build(),
null,
null
), it.next());
Assert.assertEquals(new SamplerResponse.SamplerResponseRow(
"{\"timestamp\":\"246140482-04-24T15:36:27.903Z\",\"dim1\":\"x\",\"dim2\":\"z\",\"dimLong\":\"10\",\"dimFloat\":\"20.0\",\"met1\":\"1.0\"}",
null,
true,
"Timestamp cannot be represented as a long: [MapBasedInputRow{timestamp=246140482-04-24T15:36:27.903Z, event={timestamp=246140482-04-24T15:36:27.903Z, dim1=x, dim2=z, dimLong=10, dimFloat=20.0, met1=1.0}, dimensions=[dim1, dim1t, dim2, dimLong, dimFloat]}]"
), it.next());
Assert.assertEquals(new SamplerResponse.SamplerResponseRow(
"unparseable",
null,
true,
"Unable to parse row [unparseable]"
), it.next());
Assert.assertFalse(it.hasNext());
}
private static void insertData(List<ProducerRecord<byte[], byte[]>> data)
{
try (final KafkaProducer<byte[], byte[]> kafkaProducer = kafkaServer.newProducer()) {
kafkaProducer.initTransactions();
kafkaProducer.beginTransaction();
data.forEach(kafkaProducer::send);
kafkaProducer.commitTransaction();
}
}
private static byte[] jb(String timestamp, String dim1, String dim2, String dimLong, String dimFloat, String met1)
{
try {
return new ObjectMapper().writeValueAsBytes(
ImmutableMap.builder()
.put("timestamp", timestamp)
.put("dim1", dim1)
.put("dim2", dim2)
.put("dimLong", dimLong)
.put("dimFloat", dimFloat)
.put("met1", met1)
.build()
);
}
catch (Exception e) {
throw new RuntimeException(e);
}
}
}

View File

@ -48,7 +48,8 @@ public class KinesisIndexingServiceModule implements DruidModule
new NamedType(KinesisDataSourceMetadata.class, "kinesis"),
new NamedType(KinesisIndexTaskIOConfig.class, "kinesis"),
new NamedType(KinesisSupervisorTuningConfig.class, "kinesis"),
new NamedType(KinesisSupervisorSpec.class, "kinesis")
new NamedType(KinesisSupervisorSpec.class, "kinesis"),
new NamedType(KinesisSamplerSpec.class, "kinesis")
)
);
}

View File

@ -0,0 +1,92 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.indexing.kinesis;
import com.fasterxml.jackson.annotation.JacksonInject;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.google.inject.name.Named;
import org.apache.druid.common.aws.AWSCredentialsConfig;
import org.apache.druid.data.input.Firehose;
import org.apache.druid.data.input.impl.InputRowParser;
import org.apache.druid.indexing.kinesis.supervisor.KinesisSupervisorIOConfig;
import org.apache.druid.indexing.kinesis.supervisor.KinesisSupervisorSpec;
import org.apache.druid.indexing.kinesis.supervisor.KinesisSupervisorTuningConfig;
import org.apache.druid.indexing.overlord.sampler.FirehoseSampler;
import org.apache.druid.indexing.overlord.sampler.SamplerConfig;
import org.apache.druid.indexing.seekablestream.SeekableStreamSamplerSpec;
import org.apache.druid.indexing.seekablestream.common.RecordSupplier;
public class KinesisSamplerSpec extends SeekableStreamSamplerSpec
{
private final AWSCredentialsConfig awsCredentialsConfig;
@JsonCreator
public KinesisSamplerSpec(
@JsonProperty("spec") final KinesisSupervisorSpec ingestionSpec,
@JsonProperty("samplerConfig") final SamplerConfig samplerConfig,
@JacksonInject FirehoseSampler firehoseSampler,
@JacksonInject @Named("kinesis") AWSCredentialsConfig awsCredentialsConfig
)
{
super(ingestionSpec, samplerConfig, firehoseSampler);
this.awsCredentialsConfig = awsCredentialsConfig;
}
@Override
protected Firehose getFirehose(InputRowParser parser)
{
return new KinesisSamplerFirehose(parser);
}
protected class KinesisSamplerFirehose extends SeekableStreamSamplerFirehose
{
protected KinesisSamplerFirehose(InputRowParser parser)
{
super(parser);
}
@Override
protected RecordSupplier getRecordSupplier()
{
KinesisSupervisorIOConfig ioConfig = (KinesisSupervisorIOConfig) KinesisSamplerSpec.this.ioConfig;
KinesisSupervisorTuningConfig tuningConfig = ((KinesisSupervisorTuningConfig) KinesisSamplerSpec.this.tuningConfig);
return new KinesisRecordSupplier(
KinesisRecordSupplier.getAmazonKinesisClient(
ioConfig.getEndpoint(),
awsCredentialsConfig,
ioConfig.getAwsAssumedRoleArn(),
ioConfig.getAwsExternalId()
),
ioConfig.getRecordsPerFetch(),
ioConfig.getFetchDelayMillis(),
1,
ioConfig.isDeaggregate(),
tuningConfig.getRecordBufferSize(),
tuningConfig.getRecordBufferOfferTimeout(),
tuningConfig.getRecordBufferFullWait(),
tuningConfig.getFetchSequenceNumberTimeout(),
tuningConfig.getMaxRecordsPerPoll()
);
}
}
}

View File

@ -0,0 +1,305 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.indexing.kinesis;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import com.google.common.collect.ImmutableSet;
import org.apache.druid.client.cache.MapCache;
import org.apache.druid.common.aws.AWSCredentialsConfig;
import org.apache.druid.data.input.Firehose;
import org.apache.druid.data.input.impl.DimensionsSpec;
import org.apache.druid.data.input.impl.FloatDimensionSchema;
import org.apache.druid.data.input.impl.InputRowParser;
import org.apache.druid.data.input.impl.JSONParseSpec;
import org.apache.druid.data.input.impl.LongDimensionSchema;
import org.apache.druid.data.input.impl.StringDimensionSchema;
import org.apache.druid.data.input.impl.StringInputRowParser;
import org.apache.druid.data.input.impl.TimestampSpec;
import org.apache.druid.indexing.kinesis.supervisor.KinesisSupervisorIOConfig;
import org.apache.druid.indexing.kinesis.supervisor.KinesisSupervisorSpec;
import org.apache.druid.indexing.overlord.sampler.FirehoseSampler;
import org.apache.druid.indexing.overlord.sampler.SamplerCache;
import org.apache.druid.indexing.overlord.sampler.SamplerConfig;
import org.apache.druid.indexing.overlord.sampler.SamplerResponse;
import org.apache.druid.indexing.seekablestream.common.OrderedPartitionableRecord;
import org.apache.druid.indexing.seekablestream.common.RecordSupplier;
import org.apache.druid.indexing.seekablestream.common.StreamPartition;
import org.apache.druid.java.util.common.StringUtils;
import org.apache.druid.java.util.common.granularity.Granularities;
import org.apache.druid.java.util.common.parsers.JSONPathSpec;
import org.apache.druid.query.aggregation.AggregatorFactory;
import org.apache.druid.query.aggregation.CountAggregatorFactory;
import org.apache.druid.query.aggregation.DoubleSumAggregatorFactory;
import org.apache.druid.segment.TestHelper;
import org.apache.druid.segment.indexing.DataSchema;
import org.apache.druid.segment.indexing.granularity.UniformGranularitySpec;
import org.easymock.EasyMockSupport;
import org.junit.Assert;
import org.junit.Test;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import static org.easymock.EasyMock.anyLong;
import static org.easymock.EasyMock.expect;
import static org.easymock.EasyMock.expectLastCall;
public class KinesisSamplerSpecTest extends EasyMockSupport
{
private static final ObjectMapper objectMapper = TestHelper.makeJsonMapper();
private static final String STREAM = "sampling";
private static final String SHARD_ID = "1";
private static final DataSchema DATA_SCHEMA = new DataSchema(
"test_ds",
objectMapper.convertValue(
new StringInputRowParser(
new JSONParseSpec(
new TimestampSpec("timestamp", "iso", null),
new DimensionsSpec(
Arrays.asList(
new StringDimensionSchema("dim1"),
new StringDimensionSchema("dim1t"),
new StringDimensionSchema("dim2"),
new LongDimensionSchema("dimLong"),
new FloatDimensionSchema("dimFloat")
),
null,
null
),
new JSONPathSpec(true, ImmutableList.of()),
ImmutableMap.of()
),
StandardCharsets.UTF_8.name()
),
Map.class
),
new AggregatorFactory[]{
new DoubleSumAggregatorFactory("met1sum", "met1"),
new CountAggregatorFactory("rows")
},
new UniformGranularitySpec(Granularities.DAY, Granularities.NONE, null),
null,
objectMapper
);
private final KinesisRecordSupplier recordSupplier = mock(KinesisRecordSupplier.class);
private static List<OrderedPartitionableRecord<String, String>> generateRecords(String stream)
{
return ImmutableList.of(
new OrderedPartitionableRecord<>(stream, "1", "0", jb("2008", "a", "y", "10", "20.0", "1.0")),
new OrderedPartitionableRecord<>(stream, "1", "1", jb("2009", "b", "y", "10", "20.0", "1.0")),
new OrderedPartitionableRecord<>(stream, "1", "2", jb("2010", "c", "y", "10", "20.0", "1.0")),
new OrderedPartitionableRecord<>(
stream,
"1",
"5",
jb("246140482-04-24T15:36:27.903Z", "x", "z", "10", "20.0", "1.0")
),
new OrderedPartitionableRecord<>(
stream,
"1",
"6",
Collections.singletonList(StringUtils.toUtf8("unparseable"))
),
new OrderedPartitionableRecord<>(stream, "1", "8", Collections.singletonList(StringUtils.toUtf8("{}")))
);
}
@Test(timeout = 10_000L)
public void testSample() throws Exception
{
expect(recordSupplier.getPartitionIds(STREAM)).andReturn(ImmutableSet.of(SHARD_ID)).once();
recordSupplier.assign(ImmutableSet.of(StreamPartition.of(STREAM, SHARD_ID)));
expectLastCall().once();
recordSupplier.seekToEarliest(ImmutableSet.of(StreamPartition.of(STREAM, SHARD_ID)));
expectLastCall().once();
expect(recordSupplier.poll(anyLong())).andReturn(generateRecords(STREAM)).once();
recordSupplier.close();
expectLastCall().once();
replayAll();
KinesisSupervisorSpec supervisorSpec = new KinesisSupervisorSpec(
DATA_SCHEMA,
null,
new KinesisSupervisorIOConfig(
STREAM,
null,
null,
null,
null,
null,
null,
null,
true,
null,
null,
null,
null,
null,
null,
null,
false
),
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
);
KinesisSamplerSpec samplerSpec = new TestableKinesisSamplerSpec(
supervisorSpec,
new SamplerConfig(5, null, null, null),
new FirehoseSampler(objectMapper, new SamplerCache(MapCache.create(100000))),
null
);
SamplerResponse response = samplerSpec.sample();
verifyAll();
Assert.assertNotNull(response.getCacheKey());
Assert.assertEquals(5, (int) response.getNumRowsRead());
Assert.assertEquals(3, (int) response.getNumRowsIndexed());
Assert.assertEquals(5, response.getData().size());
Iterator<SamplerResponse.SamplerResponseRow> it = response.getData().iterator();
Assert.assertEquals(new SamplerResponse.SamplerResponseRow(
"{\"timestamp\":\"2008\",\"dim1\":\"a\",\"dim2\":\"y\",\"dimLong\":\"10\",\"dimFloat\":\"20.0\",\"met1\":\"1.0\"}",
ImmutableMap.<String, Object>builder()
.put("__time", 1199145600000L)
.put("dim1", "a")
.put("dim2", "y")
.put("dimLong", 10L)
.put("dimFloat", 20.0F)
.put("rows", 1L)
.put("met1sum", 1.0)
.build(),
null,
null
), it.next());
Assert.assertEquals(new SamplerResponse.SamplerResponseRow(
"{\"timestamp\":\"2009\",\"dim1\":\"b\",\"dim2\":\"y\",\"dimLong\":\"10\",\"dimFloat\":\"20.0\",\"met1\":\"1.0\"}",
ImmutableMap.<String, Object>builder()
.put("__time", 1230768000000L)
.put("dim1", "b")
.put("dim2", "y")
.put("dimLong", 10L)
.put("dimFloat", 20.0F)
.put("rows", 1L)
.put("met1sum", 1.0)
.build(),
null,
null
), it.next());
Assert.assertEquals(new SamplerResponse.SamplerResponseRow(
"{\"timestamp\":\"2010\",\"dim1\":\"c\",\"dim2\":\"y\",\"dimLong\":\"10\",\"dimFloat\":\"20.0\",\"met1\":\"1.0\"}",
ImmutableMap.<String, Object>builder()
.put("__time", 1262304000000L)
.put("dim1", "c")
.put("dim2", "y")
.put("dimLong", 10L)
.put("dimFloat", 20.0F)
.put("rows", 1L)
.put("met1sum", 1.0)
.build(),
null,
null
), it.next());
Assert.assertEquals(new SamplerResponse.SamplerResponseRow(
"{\"timestamp\":\"246140482-04-24T15:36:27.903Z\",\"dim1\":\"x\",\"dim2\":\"z\",\"dimLong\":\"10\",\"dimFloat\":\"20.0\",\"met1\":\"1.0\"}",
null,
true,
"Timestamp cannot be represented as a long: [MapBasedInputRow{timestamp=246140482-04-24T15:36:27.903Z, event={timestamp=246140482-04-24T15:36:27.903Z, dim1=x, dim2=z, dimLong=10, dimFloat=20.0, met1=1.0}, dimensions=[dim1, dim1t, dim2, dimLong, dimFloat]}]"
), it.next());
Assert.assertEquals(new SamplerResponse.SamplerResponseRow(
"unparseable",
null,
true,
"Unable to parse row [unparseable]"
), it.next());
Assert.assertFalse(it.hasNext());
}
private static List<byte[]> jb(String ts, String dim1, String dim2, String dimLong, String dimFloat, String met1)
{
try {
return Collections.singletonList(new ObjectMapper().writeValueAsBytes(
ImmutableMap.builder()
.put("timestamp", ts)
.put("dim1", dim1)
.put("dim2", dim2)
.put("dimLong", dimLong)
.put("dimFloat", dimFloat)
.put("met1", met1)
.build()
));
}
catch (Exception e) {
throw new RuntimeException(e);
}
}
private class TestableKinesisSamplerSpec extends KinesisSamplerSpec
{
private TestableKinesisSamplerSpec(
KinesisSupervisorSpec ingestionSpec,
SamplerConfig samplerConfig,
FirehoseSampler firehoseSampler,
AWSCredentialsConfig awsCredentialsConfig
)
{
super(ingestionSpec, samplerConfig, firehoseSampler, awsCredentialsConfig);
}
@Override
protected Firehose getFirehose(InputRowParser parser)
{
return new KinesisSamplerFirehose(parser)
{
@Override
protected RecordSupplier getRecordSupplier()
{
return recordSupplier;
}
};
}
}
}

View File

@ -0,0 +1,207 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.indexing.seekablestream;
import com.google.common.base.Preconditions;
import org.apache.druid.data.input.Firehose;
import org.apache.druid.data.input.FirehoseFactory;
import org.apache.druid.data.input.InputRow;
import org.apache.druid.data.input.InputRowPlusRaw;
import org.apache.druid.data.input.impl.InputRowParser;
import org.apache.druid.data.input.impl.StringInputRowParser;
import org.apache.druid.indexing.overlord.sampler.FirehoseSampler;
import org.apache.druid.indexing.overlord.sampler.SamplerConfig;
import org.apache.druid.indexing.overlord.sampler.SamplerException;
import org.apache.druid.indexing.overlord.sampler.SamplerResponse;
import org.apache.druid.indexing.overlord.sampler.SamplerSpec;
import org.apache.druid.indexing.seekablestream.common.OrderedPartitionableRecord;
import org.apache.druid.indexing.seekablestream.common.RecordSupplier;
import org.apache.druid.indexing.seekablestream.common.StreamPartition;
import org.apache.druid.indexing.seekablestream.supervisor.SeekableStreamSupervisorIOConfig;
import org.apache.druid.indexing.seekablestream.supervisor.SeekableStreamSupervisorSpec;
import org.apache.druid.indexing.seekablestream.supervisor.SeekableStreamSupervisorTuningConfig;
import org.apache.druid.java.util.common.parsers.ParseException;
import org.apache.druid.segment.indexing.DataSchema;
import org.apache.druid.utils.Runnables;
import javax.annotation.Nullable;
import java.io.File;
import java.nio.ByteBuffer;
import java.util.Iterator;
import java.util.List;
import java.util.Set;
import java.util.stream.Collectors;
public abstract class SeekableStreamSamplerSpec<PartitionIdType, SequenceOffsetType> implements SamplerSpec
{
private static final int POLL_TIMEOUT_MS = 100;
private final DataSchema dataSchema;
private final FirehoseSampler firehoseSampler;
protected final SeekableStreamSupervisorIOConfig ioConfig;
protected final SeekableStreamSupervisorTuningConfig tuningConfig;
protected final SamplerConfig samplerConfig;
public SeekableStreamSamplerSpec(
final SeekableStreamSupervisorSpec ingestionSpec,
final SamplerConfig samplerConfig,
final FirehoseSampler firehoseSampler
)
{
this.dataSchema = Preconditions.checkNotNull(ingestionSpec, "[spec] is required").getDataSchema();
this.ioConfig = Preconditions.checkNotNull(ingestionSpec.getIoConfig(), "[spec.ioConfig] is required");
this.tuningConfig = ingestionSpec.getTuningConfig();
this.samplerConfig = samplerConfig;
this.firehoseSampler = firehoseSampler;
}
@Override
public SamplerResponse sample()
{
return firehoseSampler.sample(
new FirehoseFactory()
{
@Override
public Firehose connect(InputRowParser parser, @Nullable File temporaryDirectory)
{
return getFirehose(parser);
}
},
dataSchema,
samplerConfig
);
}
protected abstract Firehose getFirehose(InputRowParser parser);
protected abstract class SeekableStreamSamplerFirehose implements Firehose
{
private final InputRowParser parser;
private final RecordSupplier<PartitionIdType, SequenceOffsetType> recordSupplier;
private Iterator<OrderedPartitionableRecord<PartitionIdType, SequenceOffsetType>> recordIterator;
private Iterator<byte[]> recordDataIterator;
private volatile boolean closed = false;
protected SeekableStreamSamplerFirehose(InputRowParser parser)
{
this.parser = parser;
if (parser instanceof StringInputRowParser) {
((StringInputRowParser) parser).startFileFromBeginning();
}
this.recordSupplier = getRecordSupplier();
try {
assignAndSeek();
}
catch (InterruptedException e) {
throw new SamplerException(e, "Exception while seeking to partitions");
}
}
@Override
public boolean hasMore()
{
return !closed;
}
@Nullable
@Override
public InputRow nextRow()
{
InputRowPlusRaw row = nextRowWithRaw();
if (row.getParseException() != null) {
throw row.getParseException();
}
return row.getInputRow();
}
@Override
public InputRowPlusRaw nextRowWithRaw()
{
if (recordDataIterator == null || !recordDataIterator.hasNext()) {
if (recordIterator == null || !recordIterator.hasNext()) {
recordIterator = recordSupplier.poll(POLL_TIMEOUT_MS).iterator();
if (!recordIterator.hasNext()) {
return InputRowPlusRaw.of((InputRow) null, null);
}
}
recordDataIterator = recordIterator.next().getData().iterator();
if (!recordDataIterator.hasNext()) {
return InputRowPlusRaw.of((InputRow) null, null);
}
}
byte[] raw = recordDataIterator.next();
try {
List<InputRow> rows = parser.parseBatch(ByteBuffer.wrap(raw));
return InputRowPlusRaw.of(rows.isEmpty() ? null : rows.get(0), raw);
}
catch (ParseException e) {
return InputRowPlusRaw.of(raw, e);
}
}
@Override
public Runnable commit()
{
return Runnables.getNoopRunnable();
}
@Override
public void close()
{
if (closed) {
return;
}
closed = true;
recordSupplier.close();
}
private void assignAndSeek() throws InterruptedException
{
final Set<StreamPartition<PartitionIdType>> partitions = recordSupplier
.getPartitionIds(ioConfig.getStream())
.stream()
.map(x -> StreamPartition.of(ioConfig.getStream(), x))
.collect(Collectors.toSet());
recordSupplier.assign(partitions);
if (ioConfig.isUseEarliestSequenceNumber()) {
recordSupplier.seekToEarliest(partitions);
} else {
recordSupplier.seekToLatest(partitions);
}
}
protected abstract RecordSupplier<PartitionIdType, SequenceOffsetType> getRecordSupplier();
}
}