mirror of https://github.com/apache/druid.git
Allow SegmentMetadataQuery to skip cardinality and size calculations
This commit is contained in:
parent
aaa8a88464
commit
e6a6284ebd
|
@ -29,6 +29,7 @@ There are several main parts to a segment metadata query:
|
|||
|toInclude|A JSON Object representing what columns should be included in the result. Defaults to "all".|no|
|
||||
|merge|Merge all individual segment metadata results into a single result|no|
|
||||
|context|See [Context](../querying/query-context.html)|no|
|
||||
|analysisTypes|A list of Strings specifying what column properties (e.g. cardinality, size) should be calculated and returned in the result. Defaults to ["cardinality", "size"]. See section [analysisTypes](#analysistypes) for more details.|no|
|
||||
|
||||
The format of the result is:
|
||||
|
||||
|
@ -86,3 +87,21 @@ The grammar is as follows:
|
|||
``` json
|
||||
"toInclude": { "type": "list", "columns": [<string list of column names>]}
|
||||
```
|
||||
|
||||
### analysisTypes
|
||||
|
||||
This is a list of properties that determines the amount of information returned about the columns, i.e. analyses to be performed on the columns.
|
||||
|
||||
By default, all analysis types will be used. If a property is not needed, omitting it from this list will result in a more efficient query.
|
||||
|
||||
There are 2 types of column analyses:
|
||||
|
||||
#### cardinality
|
||||
|
||||
* Estimated floor of cardinality for each column. Only relevant for dimension columns.
|
||||
|
||||
#### size
|
||||
|
||||
* Estimated byte size for the segment columns if they were stored in a flat format
|
||||
|
||||
* Estimated total segment byte size in if it was stored in a flat format
|
||||
|
|
|
@ -905,6 +905,7 @@ public class Druids
|
|||
toInclude,
|
||||
merge,
|
||||
context,
|
||||
null,
|
||||
false
|
||||
);
|
||||
}
|
||||
|
|
|
@ -26,6 +26,7 @@ import com.google.common.primitives.Longs;
|
|||
import com.metamx.common.logger.Logger;
|
||||
import com.metamx.common.StringUtils;
|
||||
import io.druid.query.metadata.metadata.ColumnAnalysis;
|
||||
import io.druid.query.metadata.metadata.SegmentMetadataQuery;
|
||||
import io.druid.segment.QueryableIndex;
|
||||
import io.druid.segment.StorageAdapter;
|
||||
import io.druid.segment.column.BitmapIndex;
|
||||
|
@ -38,6 +39,7 @@ import io.druid.segment.serde.ComplexMetricSerde;
|
|||
import io.druid.segment.serde.ComplexMetrics;
|
||||
|
||||
import java.util.Collections;
|
||||
import java.util.EnumSet;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
|
@ -55,7 +57,7 @@ public class SegmentAnalyzer
|
|||
*/
|
||||
private static final int NUM_BYTES_IN_TEXT_FLOAT = 8;
|
||||
|
||||
public Map<String, ColumnAnalysis> analyze(QueryableIndex index)
|
||||
public Map<String, ColumnAnalysis> analyze(QueryableIndex index, EnumSet<SegmentMetadataQuery.AnalysisType> analysisTypes)
|
||||
{
|
||||
Preconditions.checkNotNull(index, "Index cannot be null");
|
||||
|
||||
|
@ -69,16 +71,16 @@ public class SegmentAnalyzer
|
|||
final ValueType type = capabilities.getType();
|
||||
switch (type) {
|
||||
case LONG:
|
||||
analysis = analyzeLongColumn(column);
|
||||
analysis = analyzeLongColumn(column, analysisTypes);
|
||||
break;
|
||||
case FLOAT:
|
||||
analysis = analyzeFloatColumn(column);
|
||||
analysis = analyzeFloatColumn(column, analysisTypes);
|
||||
break;
|
||||
case STRING:
|
||||
analysis = analyzeStringColumn(column);
|
||||
analysis = analyzeStringColumn(column, analysisTypes);
|
||||
break;
|
||||
case COMPLEX:
|
||||
analysis = analyzeComplexColumn(column);
|
||||
analysis = analyzeComplexColumn(column, analysisTypes);
|
||||
break;
|
||||
default:
|
||||
log.warn("Unknown column type[%s].", type);
|
||||
|
@ -90,13 +92,13 @@ public class SegmentAnalyzer
|
|||
|
||||
columns.put(
|
||||
Column.TIME_COLUMN_NAME,
|
||||
lengthBasedAnalysis(index.getColumn(Column.TIME_COLUMN_NAME), NUM_BYTES_IN_TIMESTAMP)
|
||||
lengthBasedAnalysis(index.getColumn(Column.TIME_COLUMN_NAME), NUM_BYTES_IN_TIMESTAMP, analysisTypes)
|
||||
);
|
||||
|
||||
return columns;
|
||||
}
|
||||
|
||||
public Map<String, ColumnAnalysis> analyze(StorageAdapter adapter)
|
||||
public Map<String, ColumnAnalysis> analyze(StorageAdapter adapter, EnumSet<SegmentMetadataQuery.AnalysisType> analysisTypes)
|
||||
{
|
||||
Preconditions.checkNotNull(adapter, "Adapter cannot be null");
|
||||
Map<String, ColumnAnalysis> columns = Maps.newTreeMap();
|
||||
|
@ -114,16 +116,34 @@ public class SegmentAnalyzer
|
|||
ValueType capType = capabilities.getType();
|
||||
switch (capType) {
|
||||
case LONG:
|
||||
analysis = lengthBasedAnalysisForAdapter(capType.name(), capabilities, numRows, Longs.BYTES);
|
||||
analysis = lengthBasedAnalysisForAdapter(
|
||||
analysisTypes,
|
||||
capType.name(), capabilities,
|
||||
numRows, Longs.BYTES
|
||||
);
|
||||
break;
|
||||
case FLOAT:
|
||||
analysis = lengthBasedAnalysisForAdapter(capType.name(), capabilities, numRows, NUM_BYTES_IN_TEXT_FLOAT);
|
||||
analysis = lengthBasedAnalysisForAdapter(
|
||||
analysisTypes,
|
||||
capType.name(), capabilities,
|
||||
numRows, NUM_BYTES_IN_TEXT_FLOAT
|
||||
);
|
||||
break;
|
||||
case STRING:
|
||||
analysis = new ColumnAnalysis(capType.name(), 0, adapter.getDimensionCardinality(columnName), null);
|
||||
analysis = new ColumnAnalysis(
|
||||
capType.name(),
|
||||
0,
|
||||
analysisHasCardinality(analysisTypes) ? adapter.getDimensionCardinality(columnName) : 0,
|
||||
null
|
||||
);
|
||||
break;
|
||||
case COMPLEX:
|
||||
analysis = new ColumnAnalysis(capType.name(), 0, null, null);
|
||||
analysis = new ColumnAnalysis(
|
||||
capType.name(),
|
||||
0,
|
||||
null,
|
||||
null
|
||||
);
|
||||
break;
|
||||
default:
|
||||
log.warn("Unknown column type[%s].", capType);
|
||||
|
@ -135,33 +155,39 @@ public class SegmentAnalyzer
|
|||
|
||||
columns.put(
|
||||
Column.TIME_COLUMN_NAME,
|
||||
lengthBasedAnalysisForAdapter(ValueType.LONG.name(), null, numRows, NUM_BYTES_IN_TIMESTAMP)
|
||||
lengthBasedAnalysisForAdapter(analysisTypes, ValueType.LONG.name(), null, numRows, NUM_BYTES_IN_TIMESTAMP)
|
||||
);
|
||||
|
||||
return columns;
|
||||
}
|
||||
|
||||
public ColumnAnalysis analyzeLongColumn(Column column)
|
||||
|
||||
public ColumnAnalysis analyzeLongColumn(Column column, EnumSet<SegmentMetadataQuery.AnalysisType> analysisTypes)
|
||||
{
|
||||
return lengthBasedAnalysis(column, Longs.BYTES);
|
||||
return lengthBasedAnalysis(column, Longs.BYTES, analysisTypes);
|
||||
}
|
||||
|
||||
public ColumnAnalysis analyzeFloatColumn(Column column)
|
||||
public ColumnAnalysis analyzeFloatColumn(Column column, EnumSet<SegmentMetadataQuery.AnalysisType> analysisTypes)
|
||||
{
|
||||
return lengthBasedAnalysis(column, NUM_BYTES_IN_TEXT_FLOAT);
|
||||
return lengthBasedAnalysis(column, NUM_BYTES_IN_TEXT_FLOAT, analysisTypes);
|
||||
}
|
||||
|
||||
private ColumnAnalysis lengthBasedAnalysis(Column column, final int numBytes)
|
||||
private ColumnAnalysis lengthBasedAnalysis(Column column, final int numBytes, EnumSet<SegmentMetadataQuery.AnalysisType> analysisTypes)
|
||||
{
|
||||
final ColumnCapabilities capabilities = column.getCapabilities();
|
||||
if (capabilities.hasMultipleValues()) {
|
||||
return ColumnAnalysis.error("multi_value");
|
||||
}
|
||||
|
||||
return new ColumnAnalysis(capabilities.getType().name(), column.getLength() * numBytes, null, null);
|
||||
int size = 0;
|
||||
if (analysisHasSize(analysisTypes)) {
|
||||
size = column.getLength() * numBytes;
|
||||
}
|
||||
|
||||
return new ColumnAnalysis(capabilities.getType().name(), size, null, null);
|
||||
}
|
||||
|
||||
public ColumnAnalysis analyzeStringColumn(Column column)
|
||||
public ColumnAnalysis analyzeStringColumn(Column column, EnumSet<SegmentMetadataQuery.AnalysisType> analysisTypes)
|
||||
{
|
||||
final ColumnCapabilities capabilities = column.getCapabilities();
|
||||
|
||||
|
@ -170,21 +196,28 @@ public class SegmentAnalyzer
|
|||
|
||||
int cardinality = bitmapIndex.getCardinality();
|
||||
long size = 0;
|
||||
for (int i = 0; i < cardinality; ++i) {
|
||||
String value = bitmapIndex.getValue(i);
|
||||
|
||||
if (value != null) {
|
||||
size += StringUtils.toUtf8(value).length * bitmapIndex.getBitmap(value).size();
|
||||
if (analysisHasSize(analysisTypes)) {
|
||||
for (int i = 0; i < cardinality; ++i) {
|
||||
String value = bitmapIndex.getValue(i);
|
||||
if (value != null) {
|
||||
size += StringUtils.toUtf8(value).length * bitmapIndex.getBitmap(value).size();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return new ColumnAnalysis(capabilities.getType().name(), size, cardinality, null);
|
||||
return new ColumnAnalysis(
|
||||
capabilities.getType().name(),
|
||||
size,
|
||||
analysisHasCardinality(analysisTypes) ? cardinality : 0,
|
||||
null
|
||||
);
|
||||
}
|
||||
|
||||
return ColumnAnalysis.error("string_no_bitmap");
|
||||
}
|
||||
|
||||
public ColumnAnalysis analyzeComplexColumn(Column column)
|
||||
public ColumnAnalysis analyzeComplexColumn(Column column, EnumSet<SegmentMetadataQuery.AnalysisType> analysisTypes)
|
||||
{
|
||||
final ColumnCapabilities capabilities = column.getCapabilities();
|
||||
final ComplexColumn complexColumn = column.getComplexColumn();
|
||||
|
@ -202,8 +235,10 @@ public class SegmentAnalyzer
|
|||
|
||||
final int length = column.getLength();
|
||||
long size = 0;
|
||||
for (int i = 0; i < length; ++i) {
|
||||
size += inputSizeFn.apply(complexColumn.getRowValue(i));
|
||||
if (analysisHasSize(analysisTypes)) {
|
||||
for (int i = 0; i < length; ++i) {
|
||||
size += inputSizeFn.apply(complexColumn.getRowValue(i));
|
||||
}
|
||||
}
|
||||
|
||||
return new ColumnAnalysis(typeName, size, null, null);
|
||||
|
@ -220,6 +255,7 @@ public class SegmentAnalyzer
|
|||
}
|
||||
|
||||
private ColumnAnalysis lengthBasedAnalysisForAdapter(
|
||||
EnumSet<SegmentMetadataQuery.AnalysisType> analysisTypes,
|
||||
String type, ColumnCapabilities capabilities,
|
||||
int numRows, final int numBytes
|
||||
)
|
||||
|
@ -227,7 +263,20 @@ public class SegmentAnalyzer
|
|||
if (capabilities != null && capabilities.hasMultipleValues()) {
|
||||
return ColumnAnalysis.error("multi_value");
|
||||
}
|
||||
return new ColumnAnalysis(type, numRows * numBytes, null, null);
|
||||
return new ColumnAnalysis(
|
||||
type,
|
||||
analysisHasSize(analysisTypes) ? numRows * numBytes : 0,
|
||||
null,
|
||||
null
|
||||
);
|
||||
}
|
||||
|
||||
private boolean analysisHasSize(EnumSet<SegmentMetadataQuery.AnalysisType> analysisTypes) {
|
||||
return analysisTypes.contains(SegmentMetadataQuery.AnalysisType.SIZE);
|
||||
}
|
||||
|
||||
private boolean analysisHasCardinality(EnumSet<SegmentMetadataQuery.AnalysisType> analysisTypes) {
|
||||
return analysisTypes.contains(SegmentMetadataQuery.AnalysisType.CARDINALITY);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -42,6 +42,7 @@ import io.druid.query.metadata.metadata.SegmentAnalysis;
|
|||
import io.druid.query.metadata.metadata.SegmentMetadataQuery;
|
||||
import io.druid.segment.QueryableIndex;
|
||||
import io.druid.segment.Segment;
|
||||
import io.druid.segment.StorageAdapter;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
|
@ -82,15 +83,23 @@ public class SegmentMetadataQueryRunnerFactory implements QueryRunnerFactory<Seg
|
|||
SegmentMetadataQuery query = (SegmentMetadataQuery) inQ;
|
||||
|
||||
final QueryableIndex index = segment.asQueryableIndex();
|
||||
|
||||
final Map<String, ColumnAnalysis> analyzedColumns;
|
||||
final int numRows;
|
||||
long totalSize = 0;
|
||||
if (index == null) {
|
||||
// IncrementalIndexSegments (used by in-memory hydrants in the realtime service) do not have a QueryableIndex
|
||||
analyzedColumns = analyzer.analyze(segment.asStorageAdapter());
|
||||
StorageAdapter segmentAdapter = segment.asStorageAdapter();
|
||||
analyzedColumns = analyzer.analyze(segmentAdapter, query.getAnalysisTypes());
|
||||
numRows = segmentAdapter.getNumRows();
|
||||
} else {
|
||||
analyzedColumns = analyzer.analyze(index);
|
||||
analyzedColumns = analyzer.analyze(index, query.getAnalysisTypes());
|
||||
numRows = index.getNumRows();
|
||||
}
|
||||
|
||||
if (query.hasSize()) {
|
||||
// Initialize with the size of the whitespace, 1 byte per
|
||||
totalSize = analyzedColumns.size() * index.getNumRows();
|
||||
totalSize = analyzedColumns.size() * numRows;
|
||||
}
|
||||
|
||||
Map<String, ColumnAnalysis> columns = Maps.newTreeMap();
|
||||
|
|
|
@ -19,6 +19,7 @@ package io.druid.query.metadata.metadata;
|
|||
|
||||
import com.fasterxml.jackson.annotation.JsonCreator;
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import com.fasterxml.jackson.annotation.JsonValue;
|
||||
import com.google.common.base.Preconditions;
|
||||
import io.druid.common.utils.JodaUtils;
|
||||
import io.druid.query.BaseQuery;
|
||||
|
@ -30,17 +31,43 @@ import io.druid.query.spec.QuerySegmentSpec;
|
|||
import org.joda.time.Interval;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.EnumSet;
|
||||
import java.util.Map;
|
||||
|
||||
public class SegmentMetadataQuery extends BaseQuery<SegmentAnalysis>
|
||||
{
|
||||
public enum AnalysisType
|
||||
{
|
||||
CARDINALITY,
|
||||
SIZE;
|
||||
|
||||
@JsonValue
|
||||
@Override
|
||||
public String toString() {
|
||||
return this.name().toLowerCase();
|
||||
}
|
||||
|
||||
@JsonCreator
|
||||
public static AnalysisType fromString(String name) {
|
||||
return valueOf(name.toUpperCase());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
public static final Interval DEFAULT_INTERVAL = new Interval(
|
||||
JodaUtils.MIN_INSTANT, JodaUtils.MAX_INSTANT
|
||||
);
|
||||
|
||||
public static final EnumSet<AnalysisType> DEFAULT_ANALYSIS_TYPES = EnumSet.of(
|
||||
AnalysisType.CARDINALITY,
|
||||
AnalysisType.SIZE
|
||||
);
|
||||
|
||||
private final ColumnIncluderator toInclude;
|
||||
private final boolean merge;
|
||||
private final boolean usingDefaultInterval;
|
||||
private final EnumSet analysisTypes;
|
||||
|
||||
@JsonCreator
|
||||
public SegmentMetadataQuery(
|
||||
|
@ -49,6 +76,7 @@ public class SegmentMetadataQuery extends BaseQuery<SegmentAnalysis>
|
|||
@JsonProperty("toInclude") ColumnIncluderator toInclude,
|
||||
@JsonProperty("merge") Boolean merge,
|
||||
@JsonProperty("context") Map<String, Object> context,
|
||||
@JsonProperty("analysisTypes") EnumSet<AnalysisType> analysisTypes,
|
||||
@JsonProperty("usingDefaultInterval") Boolean useDefaultInterval
|
||||
)
|
||||
{
|
||||
|
@ -64,9 +92,9 @@ public class SegmentMetadataQuery extends BaseQuery<SegmentAnalysis>
|
|||
} else {
|
||||
this.usingDefaultInterval = useDefaultInterval == null ? false : useDefaultInterval;
|
||||
}
|
||||
|
||||
this.toInclude = toInclude == null ? new AllColumnIncluderator() : toInclude;
|
||||
this.merge = merge == null ? false : merge;
|
||||
this.analysisTypes = (analysisTypes == null) ? DEFAULT_ANALYSIS_TYPES : analysisTypes;
|
||||
Preconditions.checkArgument(
|
||||
dataSource instanceof TableDataSource,
|
||||
"SegmentMetadataQuery only supports table datasource"
|
||||
|
@ -103,6 +131,22 @@ public class SegmentMetadataQuery extends BaseQuery<SegmentAnalysis>
|
|||
return Query.SEGMENT_METADATA;
|
||||
}
|
||||
|
||||
@JsonProperty
|
||||
public EnumSet getAnalysisTypes()
|
||||
{
|
||||
return analysisTypes;
|
||||
}
|
||||
|
||||
public boolean hasCardinality()
|
||||
{
|
||||
return analysisTypes.contains(AnalysisType.CARDINALITY);
|
||||
}
|
||||
|
||||
public boolean hasSize()
|
||||
{
|
||||
return analysisTypes.contains(AnalysisType.SIZE);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Query<SegmentAnalysis> withOverriddenContext(Map<String, Object> contextOverride)
|
||||
{
|
||||
|
@ -112,6 +156,7 @@ public class SegmentMetadataQuery extends BaseQuery<SegmentAnalysis>
|
|||
toInclude,
|
||||
merge,
|
||||
computeOverridenContext(contextOverride),
|
||||
analysisTypes,
|
||||
usingDefaultInterval
|
||||
);
|
||||
}
|
||||
|
@ -125,6 +170,7 @@ public class SegmentMetadataQuery extends BaseQuery<SegmentAnalysis>
|
|||
toInclude,
|
||||
merge,
|
||||
getContext(),
|
||||
analysisTypes,
|
||||
usingDefaultInterval
|
||||
);
|
||||
}
|
||||
|
@ -138,6 +184,7 @@ public class SegmentMetadataQuery extends BaseQuery<SegmentAnalysis>
|
|||
toInclude,
|
||||
merge,
|
||||
getContext(),
|
||||
analysisTypes,
|
||||
usingDefaultInterval
|
||||
);
|
||||
}
|
||||
|
|
|
@ -17,9 +17,11 @@
|
|||
|
||||
package io.druid.query.metadata;
|
||||
|
||||
import com.google.common.collect.Iterables;
|
||||
import com.google.common.collect.Lists;
|
||||
import com.metamx.common.guava.Sequences;
|
||||
import io.druid.query.LegacyDataSource;
|
||||
import io.druid.query.Query;
|
||||
import io.druid.query.QueryRunner;
|
||||
import io.druid.query.QueryRunnerFactory;
|
||||
import io.druid.query.QueryRunnerTestHelper;
|
||||
|
@ -32,9 +34,11 @@ import io.druid.segment.QueryableIndexSegment;
|
|||
import io.druid.segment.Segment;
|
||||
import io.druid.segment.TestIndex;
|
||||
import io.druid.segment.column.ValueType;
|
||||
import org.joda.time.Interval;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
import java.util.EnumSet;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
@ -43,11 +47,21 @@ import java.util.Map;
|
|||
*/
|
||||
public class SegmentAnalyzerTest
|
||||
{
|
||||
private static final EnumSet<SegmentMetadataQuery.AnalysisType> emptyAnalyses =
|
||||
EnumSet.noneOf(SegmentMetadataQuery.AnalysisType.class);
|
||||
|
||||
@Test
|
||||
public void testIncrementalWorks() throws Exception
|
||||
{
|
||||
testIncrementalWorksHelper(null);
|
||||
testIncrementalWorksHelper(emptyAnalyses);
|
||||
}
|
||||
|
||||
private void testIncrementalWorksHelper(EnumSet<SegmentMetadataQuery.AnalysisType> analyses) throws Exception
|
||||
{
|
||||
final List<SegmentAnalysis> results = getSegmentAnalysises(
|
||||
new IncrementalIndexSegment(TestIndex.getIncrementalTestIndex(false), null)
|
||||
new IncrementalIndexSegment(TestIndex.getIncrementalTestIndex(false), null),
|
||||
analyses
|
||||
);
|
||||
|
||||
Assert.assertEquals(1, results.size());
|
||||
|
@ -61,28 +75,44 @@ public class SegmentAnalyzerTest
|
|||
TestIndex.COLUMNS.length,
|
||||
columns.size()
|
||||
); // All columns including time and empty/null column
|
||||
|
||||
|
||||
for (String dimension : TestIndex.DIMENSIONS) {
|
||||
final ColumnAnalysis columnAnalysis = columns.get(dimension);
|
||||
|
||||
Assert.assertEquals(dimension, ValueType.STRING.name(), columnAnalysis.getType());
|
||||
Assert.assertTrue(dimension, columnAnalysis.getCardinality() > 0);
|
||||
if (analyses == null) {
|
||||
Assert.assertTrue(dimension, columnAnalysis.getCardinality() > 0);
|
||||
} else {
|
||||
Assert.assertEquals(dimension, 0, columnAnalysis.getCardinality().longValue());
|
||||
Assert.assertEquals(dimension, 0, columnAnalysis.getSize());
|
||||
}
|
||||
}
|
||||
|
||||
for (String metric : TestIndex.METRICS) {
|
||||
final ColumnAnalysis columnAnalysis = columns.get(metric);
|
||||
|
||||
Assert.assertEquals(metric, ValueType.FLOAT.name(), columnAnalysis.getType());
|
||||
Assert.assertTrue(metric, columnAnalysis.getSize() > 0);
|
||||
if (analyses == null) {
|
||||
Assert.assertTrue(metric, columnAnalysis.getSize() > 0);
|
||||
} else {
|
||||
Assert.assertEquals(metric, 0, columnAnalysis.getSize());
|
||||
}
|
||||
Assert.assertNull(metric, columnAnalysis.getCardinality());
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMappedWorks() throws Exception
|
||||
{
|
||||
testMappedWorksHelper(null);
|
||||
testMappedWorksHelper(emptyAnalyses);
|
||||
}
|
||||
|
||||
private void testMappedWorksHelper(EnumSet<SegmentMetadataQuery.AnalysisType> analyses) throws Exception
|
||||
{
|
||||
final List<SegmentAnalysis> results = getSegmentAnalysises(
|
||||
new QueryableIndexSegment("test_1", TestIndex.getMMappedTestIndex())
|
||||
new QueryableIndexSegment("test_1", TestIndex.getMMappedTestIndex()),
|
||||
analyses
|
||||
);
|
||||
|
||||
Assert.assertEquals(1, results.size());
|
||||
|
@ -102,8 +132,13 @@ public class SegmentAnalyzerTest
|
|||
Assert.assertNull(columnAnalysis);
|
||||
} else {
|
||||
Assert.assertEquals(dimension, ValueType.STRING.name(), columnAnalysis.getType());
|
||||
Assert.assertTrue(dimension, columnAnalysis.getSize() > 0);
|
||||
Assert.assertTrue(dimension, columnAnalysis.getCardinality() > 0);
|
||||
if (analyses == null) {
|
||||
Assert.assertTrue(dimension, columnAnalysis.getSize() > 0);
|
||||
Assert.assertTrue(dimension, columnAnalysis.getCardinality() > 0);
|
||||
} else {
|
||||
Assert.assertEquals(dimension, 0, columnAnalysis.getCardinality().longValue());
|
||||
Assert.assertEquals(dimension, 0, columnAnalysis.getSize());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -111,7 +146,11 @@ public class SegmentAnalyzerTest
|
|||
final ColumnAnalysis columnAnalysis = columns.get(metric);
|
||||
|
||||
Assert.assertEquals(metric, ValueType.FLOAT.name(), columnAnalysis.getType());
|
||||
Assert.assertTrue(metric, columnAnalysis.getSize() > 0);
|
||||
if (analyses == null) {
|
||||
Assert.assertTrue(metric, columnAnalysis.getSize() > 0);
|
||||
} else {
|
||||
Assert.assertEquals(metric, 0, columnAnalysis.getSize());
|
||||
}
|
||||
Assert.assertNull(metric, columnAnalysis.getCardinality());
|
||||
}
|
||||
}
|
||||
|
@ -123,7 +162,7 @@ public class SegmentAnalyzerTest
|
|||
*
|
||||
* @return
|
||||
*/
|
||||
private List<SegmentAnalysis> getSegmentAnalysises(Segment index)
|
||||
private List<SegmentAnalysis> getSegmentAnalysises(Segment index, EnumSet<SegmentMetadataQuery.AnalysisType> analyses)
|
||||
{
|
||||
final QueryRunner runner = QueryRunnerTestHelper.makeQueryRunner(
|
||||
(QueryRunnerFactory) new SegmentMetadataQueryRunnerFactory(
|
||||
|
@ -133,7 +172,7 @@ public class SegmentAnalyzerTest
|
|||
);
|
||||
|
||||
final SegmentMetadataQuery query = new SegmentMetadataQuery(
|
||||
new LegacyDataSource("test"), QuerySegmentSpecs.create("2011/2012"), null, null, null, false
|
||||
new LegacyDataSource("test"), QuerySegmentSpecs.create("2011/2012"), null, null, null, analyses, false
|
||||
);
|
||||
HashMap<String, Object> context = new HashMap<String, Object>();
|
||||
return Sequences.toList(query.run(runner, context), Lists.<SegmentAnalysis>newArrayList());
|
||||
|
|
|
@ -50,6 +50,7 @@ import org.junit.Assert;
|
|||
import org.junit.Test;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.EnumSet;
|
||||
import java.util.List;
|
||||
import java.util.concurrent.ExecutorService;
|
||||
import java.util.concurrent.Executors;
|
||||
|
@ -164,12 +165,20 @@ public class SegmentMetadataQueryTest
|
|||
String queryStr = "{\n"
|
||||
+ " \"queryType\":\"segmentMetadata\",\n"
|
||||
+ " \"dataSource\":\"test_ds\",\n"
|
||||
+ " \"intervals\":[\"2013-12-04T00:00:00.000Z/2013-12-05T00:00:00.000Z\"]\n"
|
||||
+ " \"intervals\":[\"2013-12-04T00:00:00.000Z/2013-12-05T00:00:00.000Z\"],\n"
|
||||
+ " \"analysisTypes\":[\"cardinality\",\"size\"]\n"
|
||||
+ "}";
|
||||
|
||||
EnumSet<SegmentMetadataQuery.AnalysisType> expectedAnalysisTypes = EnumSet.of(
|
||||
SegmentMetadataQuery.AnalysisType.CARDINALITY,
|
||||
SegmentMetadataQuery.AnalysisType.SIZE
|
||||
);
|
||||
|
||||
Query query = mapper.readValue(queryStr, Query.class);
|
||||
Assert.assertTrue(query instanceof SegmentMetadataQuery);
|
||||
Assert.assertEquals("test_ds", Iterables.getOnlyElement(query.getDataSource().getNames()));
|
||||
Assert.assertEquals(new Interval("2013-12-04T00:00:00.000Z/2013-12-05T00:00:00.000Z"), query.getIntervals().get(0));
|
||||
Assert.assertEquals(expectedAnalysisTypes, ((SegmentMetadataQuery) query).getAnalysisTypes());
|
||||
|
||||
// test serialize and deserialize
|
||||
Assert.assertEquals(query, mapper.readValue(mapper.writeValueAsString(query), Query.class));
|
||||
|
|
Loading…
Reference in New Issue