Contributing Moving-Average Query to open source. (#6430)

* Contributing Moving-Average Query to open source.

* Fix failing code inspections.

* See if explicit types will invoke the correct comparison function.

* Explicitly remove support for druid.generic.useDefaultValueForNull configuration parameter.

* Update styling and headers for complience.

* Refresh code with latest master changes:

* Remove NullDimensionSelector.
* Apply changes of RequestLogger.
* Apply changes of TimelineServerView.

* Small checkstyle fix.

* Checkstyle fixes.

* Fixing rat errors; Teamcity errors.

* Removing support theta sketches. Will be added back in this pr or a following once DI conflicts with datasketches are resolved.

* Implements some of the review fixes.

* Contributing Moving-Average Query to open source.

* Fix failing code inspections.

* See if explicit types will invoke the correct comparison function.

* Explicitly remove support for druid.generic.useDefaultValueForNull configuration parameter.

* Update styling and headers for complience.

* Refresh code with latest master changes:

* Remove NullDimensionSelector.
* Apply changes of RequestLogger.
* Apply changes of TimelineServerView.

* Small checkstyle fix.

* Checkstyle fixes.

* Fixing rat errors; Teamcity errors.

* Removing support theta sketches. Will be added back in this pr or a following once DI conflicts with datasketches are resolved.

* Implements some of the review fixes.

* More fixes for review.

* More fixes from review.

* MapBasedRow is Unmodifiable. Create new rows instead of modifying existing ones.

* Remove more changes related to datasketches support.

* Refactor BaseAverager startFrom field and add a comment.

* fakeEvents field: Refactor initialization and add comment.

* Rename parameters (tiny change).

* Fix variable name typo in test (JAN_4).

* Fix styling of non camelCase fields.

* Fix Preconditions.checkArgument for cycleSize.

* Add more documentation to RowBucketIterable and other classes.

* key/value comment on in MovingAverageIterable.

* Fix anonymous makeColumnValueSelector returning null.

* Replace IdentityYieldingAccumolator with Yielders.each().

* * internalNext() should return null instead of throwing exception.
* Remove unused variables/prarameters.

* Harden MovingAverageIterableTest (Switch anyOf to exact match).

* Change internalNext() from recursion to iteration; Simplify next() and hasNext().

* Remove unused imports.

* Address review comments.

* Rename fakeEvents to emptyEvents.

* Remove redundant parameter key from computeMovingAverage.

* Check yielder as well in RowBucketIterable#hasNext()

* Fix javadoc.
This commit is contained in:
Eyal Yurman 2019-04-26 17:07:48 -07:00 committed by Jihoon Son
parent 07dd742e35
commit f02251ab2d
77 changed files with 7470 additions and 2 deletions

View File

@ -333,7 +333,8 @@
<argument>org.apache.druid.extensions.contrib:druid-time-min-max</argument> <argument>org.apache.druid.extensions.contrib:druid-time-min-max</argument>
<argument>-c</argument> <argument>-c</argument>
<argument>org.apache.druid.extensions.contrib:druid-virtual-columns</argument> <argument>org.apache.druid.extensions.contrib:druid-virtual-columns</argument>
</arguments> <argument>-c</argument>
<argument>org.apache.druid.extensions.contrib:druid-moving-average-query</argument> </arguments>
</configuration> </configuration>
</execution> </execution>
</executions> </executions>

View File

@ -0,0 +1,337 @@
---
layout: doc_page
---
<!--
~ Licensed to the Apache Software Foundation (ASF) under one
~ or more contributor license agreements. See the NOTICE file
~ distributed with this work for additional information
~ regarding copyright ownership. The ASF licenses this file
~ to you under the Apache License, Version 2.0 (the
~ "License"); you may not use this file except in compliance
~ with the License. You may obtain a copy of the License at
~
~ http://www.apache.org/licenses/LICENSE-2.0
~
~ Unless required by applicable law or agreed to in writing,
~ software distributed under the License is distributed on an
~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
~ KIND, either express or implied. See the License for the
~ specific language governing permissions and limitations
~ under the License.
-->
# Moving Average Queries
## Overview
**Moving Average Query** is an extension which provides support for [Moving Average](https://en.wikipedia.org/wiki/Moving_average) and other Aggregate [Window Functions](https://en.wikibooks.org/wiki/Structured_Query_Language/Window_functions) in Druid queries.
These Aggregate Window Functions consume standard Druid Aggregators and outputs additional windowed aggregates called [Averagers](#averagers).
#### High level algorithm
Moving Average encapsulates the [groupBy query](../../querying/groupbyquery.html) (Or [timeseries](../../querying/timeseriesquery.html) in case of no dimensions) in order to rely on the maturity of these query types.
It runs the query in two main phases:
1. Runs an inner [groupBy](../../querying/groupbyquery.html) or [timeseries](../../querying/timeseriesquery.html) query to compute Aggregators (i.e. daily count of events).
2. Passes over aggregated results in Broker, in order to compute Averagers (i.e. moving 7 day average of the daily count).
#### Main enhancements provided by this extension:
1. Functionality: Extending druid query functionality (i.e. initial introduction of Window Functions).
2. Performance: Improving performance of such moving aggregations by eliminating multiple segment scans.
#### Further reading
[Moving Average](https://en.wikipedia.org/wiki/Moving_average)
[Window Functions](https://en.wikibooks.org/wiki/Structured_Query_Language/Window_functions)
[Analytic Functions](https://cloud.google.com/bigquery/docs/reference/standard-sql/analytic-function-concepts)
## Operations
To use this extension, make sure to [load](../../operations/including-extensions.html) `druid-moving-average-query` only to the Broker.
## Configuration
There are currently no configuration properties specific to Moving Average.
## Limitations
* movingAverage is missing support for the following groupBy properties: `subtotalsSpec`, `virtualColumns`.
* movingAverage is missing support for the following timeseries properties: `descending`.
* movingAverage is missing support for [SQL-compatible null handling](https://github.com/apache/incubator-druid/issues/4349) (So setting druid.generic.useDefaultValueForNull in configuration will give an error).
##Query spec:
* Most properties in the query spec derived from [groupBy query](../../querying/groupbyquery.html) / [timeseries](../../querying/timeseriesquery.html), see documentation for these query types.
|property|description|required?|
|--------|-----------|---------|
|queryType|This String should always be "movingAverage"; this is the first thing Druid looks at to figure out how to interpret the query.|yes|
|dataSource|A String or Object defining the data source to query, very similar to a table in a relational database. See [DataSource](../../querying/datasource.html) for more information.|yes|
|dimensions|A JSON list of [DimensionSpec](../../querying/dimensionspecs.html) (Notice that property is optional)|no|
|limitSpec|See [LimitSpec](../../querying/limitspec.html)|no|
|having|See [Having](../../querying/having.html)|no|
|granularity|A period granilarity; See [Period Granularities](../../querying/granularities.html#period-granularities)|yes|
|filter|See [Filters](../../querying/filters.html)|no|
|aggregations|Aggregations forms the input to Averagers; See [Aggregations](../../querying/aggregations.html)|yes|
|postAggregations|Supports only aggregations as input; See [Post Aggregations](../../querying/post-aggregations.html)|no|
|intervals|A JSON Object representing ISO-8601 Intervals. This defines the time ranges to run the query over.|yes|
|context|An additional JSON Object which can be used to specify certain flags.|no|
|averagers|Defines the moving average function; See [Averagers](#averagers)|yes|
|postAveragers|Support input of both averagers and aggregations; Syntax is identical to postAggregations (See [Post Aggregations](../../querying/post-aggregations.html))|no|
## Averagers
Averagers are used to define the Moving-Average function. Averagers are not limited to an average - they can also provide other types of window functions such as MAX()/MIN().
### Properties
These are properties which are common to all Averagers:
|property|description|required?|
|--------|-----------|---------|
|type|Averager type; See [Averager types](#averager-types)|yes|
|name|Averager name|yes|
|fieldName|Input name (An aggregation name)|yes|
|buckets|Number of lookback buckets (time periods), including current one. Must be >0|yes|
|cycleSize|Cycle size; Used to calculate day-of-week option; See [Cycle size (Day of Week)](#cycle-size-day-of-week)|no, defaults to 1|
### Averager types:
* [Standard averagers](#standard-averagers):
* doubleMean
* doubleMeanNoNulls
* doubleMax
* doubleMin
* longMean
* longMeanNoNulls
* longMax
* longMin
#### Standard averagers
These averagers offer four functions:
* Mean (Average)
* MeanNoNulls (Ignores empty buckets).
* Max
* Min
**Ignoring nulls**:
Using a MeanNoNulls averager is useful when the interval starts at the dataset beginning time.
In that case, the first records will ignore missing buckets and average won't be artificially low.
However, this also means that empty days in a sparse dataset will also be ignored.
Example of usage:
```json
{ "type" : "doubleMean", "name" : <output_name>, "fieldName": <input_name> }
```
### Cycle size (Day of Week)
This optional parameter is used to calculate over a single bucket within each cycle instead of all buckets.
A prime example would be weekly buckets, resulting in a Day of Week calculation. (Other examples: Month of year, Hour of day).
I.e. when using these parameters:
* *granularity*: period=P1D (daily)
* *buckets*: 28
* *cycleSize*: 7
Within each output record, the averager will compute the result over the following buckets: current (#0), #7, #14, #21.
Whereas without specifying cycleSize it would have computed over all 28 buckets.
## Examples
All examples are based on the Wikipedia dataset provided in the Druid [tutorials](../../tutorials/index.html).
### Basic example
Calculating a 7-buckets moving average for Wikipedia edit deltas.
Query syntax:
```json
{
"queryType": "movingAverage",
"dataSource": "wikipedia",
"granularity": {
"type": "period",
"period": "PT30M"
},
"intervals": [
"2015-09-12T00:00:00Z/2015-09-13T00:00:00Z"
],
"aggregations": [
{
"name": "delta30Min",
"fieldName": "delta",
"type": "longSum"
}
],
"averagers": [
{
"name": "trailing30MinChanges",
"fieldName": "delta30Min",
"type": "longMean",
"buckets": 7
}
]
}
```
Result:
```json
[ {
"version" : "v1",
"timestamp" : "2015-09-12T00:30:00.000Z",
"event" : {
"delta30Min" : 30490,
"trailing30MinChanges" : 4355.714285714285
}
}, {
"version" : "v1",
"timestamp" : "2015-09-12T01:00:00.000Z",
"event" : {
"delta30Min" : 96526,
"trailing30MinChanges" : 18145.14285714286
}
}, {
...
...
...
}, {
"version" : "v1",
"timestamp" : "2015-09-12T23:00:00.000Z",
"event" : {
"delta30Min" : 119100,
"trailing30MinChanges" : 198697.2857142857
}
}, {
"version" : "v1",
"timestamp" : "2015-09-12T23:30:00.000Z",
"event" : {
"delta30Min" : 177882,
"trailing30MinChanges" : 193890.0
}
}
```
### Post averager example
Calculating a 7-buckets moving average for Wikipedia edit deltas, plus a ratio between the current period and the moving average.
Query syntax:
```json
{
"queryType": "movingAverage",
"dataSource": "wikipedia",
"granularity": {
"type": "period",
"period": "PT30M"
},
"intervals": [
"2015-09-12T22:00:00Z/2015-09-13T00:00:00Z"
],
"aggregations": [
{
"name": "delta30Min",
"fieldName": "delta",
"type": "longSum"
}
],
"averagers": [
{
"name": "trailing30MinChanges",
"fieldName": "delta30Min",
"type": "longMean",
"buckets": 7
}
],
"postAveragers" : [
{
"name": "ratioTrailing30MinChanges",
"type": "arithmetic",
"fn": "/",
"fields": [
{
"type": "fieldAccess",
"fieldName": "delta30Min"
},
{
"type": "fieldAccess",
"fieldName": "trailing30MinChanges"
}
]
}
]
}
```
Result:
```json
[ {
"version" : "v1",
"timestamp" : "2015-09-12T22:00:00.000Z",
"event" : {
"delta30Min" : 144269,
"trailing30MinChanges" : 204088.14285714287,
"ratioTrailing30MinChanges" : 0.7068955500319539
}
}, {
"version" : "v1",
"timestamp" : "2015-09-12T22:30:00.000Z",
"event" : {
"delta30Min" : 242860,
"trailing30MinChanges" : 214031.57142857142,
"ratioTrailing30MinChanges" : 1.134692411867141
}
}, {
"version" : "v1",
"timestamp" : "2015-09-12T23:00:00.000Z",
"event" : {
"delta30Min" : 119100,
"trailing30MinChanges" : 198697.2857142857,
"ratioTrailing30MinChanges" : 0.5994042624782422
}
}, {
"version" : "v1",
"timestamp" : "2015-09-12T23:30:00.000Z",
"event" : {
"delta30Min" : 177882,
"trailing30MinChanges" : 193890.0,
"ratioTrailing30MinChanges" : 0.9174377224199288
}
} ]
```
### Cycle size example
Calculating an average of every first 10-minutes of the last 3 hours:
Query syntax:
```json
{
"queryType": "movingAverage",
"dataSource": "wikipedia",
"granularity": {
"type": "period",
"period": "PT10M"
},
"intervals": [
"2015-09-12T00:00:00Z/2015-09-13T00:00:00Z"
],
"aggregations": [
{
"name": "delta10Min",
"fieldName": "delta",
"type": "doubleSum"
}
],
"averagers": [
{
"name": "trailing10MinPerHourChanges",
"fieldName": "delta10Min",
"type": "doubleMeanNoNulls",
"buckets": 18,
"cycleSize": 6
}
]
}
```

View File

@ -95,6 +95,7 @@ All of these community extensions can be downloaded using *pull-deps* with the c
|kafka-emitter|Kafka metrics emitter|[link](../development/extensions-contrib/kafka-emitter.html)| |kafka-emitter|Kafka metrics emitter|[link](../development/extensions-contrib/kafka-emitter.html)|
|druid-thrift-extensions|Support thrift ingestion |[link](../development/extensions-contrib/thrift.html)| |druid-thrift-extensions|Support thrift ingestion |[link](../development/extensions-contrib/thrift.html)|
|druid-opentsdb-emitter|OpenTSDB metrics emitter |[link](../development/extensions-contrib/opentsdb-emitter.html)| |druid-opentsdb-emitter|OpenTSDB metrics emitter |[link](../development/extensions-contrib/opentsdb-emitter.html)|
|druid-moving-average-query|Support for [Moving Average](https://en.wikipedia.org/wiki/Moving_average) and other Aggregate [Window Functions](https://en.wikibooks.org/wiki/Structured_Query_Language/Window_functions) in Druid queries.|[link](../development/extensions-contrib/moving-average-query.html)|
## Promoting Community Extension to Core Extension ## Promoting Community Extension to Core Extension

View File

@ -0,0 +1,29 @@
<!--
~ Licensed to the Apache Software Foundation (ASF) under one
~ or more contributor license agreements. See the NOTICE file
~ distributed with this work for additional information
~ regarding copyright ownership. The ASF licenses this file
~ to you under the Apache License, Version 2.0 (the
~ "License"); you may not use this file except in compliance
~ with the License. You may obtain a copy of the License at
~
~ http://www.apache.org/licenses/LICENSE-2.0
~
~ Unless required by applicable law or agreed to in writing,
~ software distributed under the License is distributed on an
~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
~ KIND, either express or implied. See the License for the
~ specific language governing permissions and limitations
~ under the License.
-->
druid-moving-average-query
=============
Overview
=============
**Moving Average Query** is an extension which provides support for [Moving Average](https://en.wikipedia.org/wiki/Moving_average) and other Aggregate [Window Functions](https://en.wikibooks.org/wiki/Structured_Query_Language/Window_functions) in Druid queries.
Documentation
=============
See the druid.io website or under [Druid Github Repo](https://github.com/apache/incubator-druid/tree/master/docs/content/development/extensions-contrib/moving-average-query.md).

View File

@ -0,0 +1,83 @@
<?xml version="1.0"?>
<!--
~ Licensed to the Apache Software Foundation (ASF) under one
~ or more contributor license agreements. See the NOTICE file
~ distributed with this work for additional information
~ regarding copyright ownership. The ASF licenses this file
~ to you under the Apache License, Version 2.0 (the
~ "License"); you may not use this file except in compliance
~ with the License. You may obtain a copy of the License at
~
~ http://www.apache.org/licenses/LICENSE-2.0
~
~ Unless required by applicable law or agreed to in writing,
~ software distributed under the License is distributed on an
~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
~ KIND, either express or implied. See the License for the
~ specific language governing permissions and limitations
~ under the License.
-->
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.apache.druid</groupId>
<artifactId>druid</artifactId>
<version>0.15.0-incubating-SNAPSHOT</version>
<relativePath>../../pom.xml</relativePath>
</parent>
<groupId>org.apache.druid.extensions.contrib</groupId>
<artifactId>druid-moving-average-query</artifactId>
<name>druid-moving-average-query</name>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.jmockit</groupId>
<artifactId>jmockit</artifactId>
<version>1.25</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.hamcrest</groupId>
<artifactId>hamcrest-library</artifactId>
<version>1.3</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-yaml</artifactId>
<version>2.8.3</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.druid</groupId>
<artifactId>druid-core</artifactId>
<version>${project.parent.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.druid</groupId>
<artifactId>druid-processing</artifactId>
<version>${project.parent.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.druid</groupId>
<artifactId>druid-server</artifactId>
<version>${project.parent.version}</version>
<scope>provided</scope>
</dependency>
</dependencies>
</project>

View File

@ -0,0 +1,179 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import org.apache.druid.query.aggregation.Aggregator;
import org.apache.druid.query.aggregation.AggregatorFactory;
import org.apache.druid.query.aggregation.BufferAggregator;
import org.apache.druid.query.movingaverage.averagers.AveragerFactory;
import org.apache.druid.segment.ColumnSelectorFactory;
import java.util.Comparator;
import java.util.List;
/**
* A wrapper around averagers that makes them appear to be aggregators.
* This is necessary purely to allow existing common druid code that only knows
* about aggregators to work with the MovingAverageQuery query as well.
*
* NOTE: The {@link AggregatorFactory} abstract class is only partially extended.
* Most methods are not implemented and throw {@link UnsupportedOperationException} if called.
* This is becsuse these methods are invalid for the AveragerFactoryWrapper.
*
* @param <T> Result type
* @param <R> Finalized Result type
*/
public class AveragerFactoryWrapper<T, R> extends AggregatorFactory
{
private final AveragerFactory<T, R> af;
private final String prefix;
/**
* Simple constructor
*
* @param af
* @param prefix
*/
public AveragerFactoryWrapper(AveragerFactory<T, R> af, String prefix)
{
this.af = af;
this.prefix = prefix;
}
/**
* Not implemented. Throws UnsupportedOperationException.
*/
@Override
public Aggregator factorize(ColumnSelectorFactory metricFactory) throws UnsupportedOperationException
{
throw new UnsupportedOperationException("Invalid operation for AveragerFactoryWrapper.");
}
/**
* Not implemented. Throws UnsupportedOperationException.
*/
@Override
public BufferAggregator factorizeBuffered(ColumnSelectorFactory metricFactory)
{
throw new UnsupportedOperationException("Invalid operation for AveragerFactoryWrapper.");
}
/* (non-Javadoc)
* @see org.apache.druid.query.aggregation.AggregatorFactory#getComparator()
*/
@Override
public Comparator<?> getComparator()
{
return af.getComparator();
}
/**
* Not implemented. Throws UnsupportedOperationException.
*/
@Override
public Object combine(Object lhs, Object rhs)
{
throw new UnsupportedOperationException("Invalid operation for AveragerFactoryWrapper.");
}
/**
* Not implemented. Throws UnsupportedOperationException.
*/
@Override
public AggregatorFactory getCombiningFactory()
{
throw new UnsupportedOperationException("Invalid operation for AveragerFactoryWrapper.");
}
/**
* Not implemented. Throws UnsupportedOperationException.
*/
@Override
public List<AggregatorFactory> getRequiredColumns()
{
throw new UnsupportedOperationException("Invalid operation for AveragerFactoryWrapper.");
}
/**
* Not implemented. Throws UnsupportedOperationException.
*/
@Override
public Object deserialize(Object object)
{
throw new UnsupportedOperationException("Invalid operation for AveragerFactoryWrapper.");
}
/**
* Not implemented. Throws UnsupportedOperationException.
*/
@SuppressWarnings("unchecked")
@Override
public Object finalizeComputation(Object object)
{
return af.finalizeComputation((T) object);
}
/* (non-Javadoc)
* @see org.apache.druid.query.aggregation.AggregatorFactory#getName()
*/
@Override
public String getName()
{
return prefix + af.getName();
}
/**
* Not implemented. Throws UnsupportedOperationException.
*/
@Override
public List<String> requiredFields()
{
throw new UnsupportedOperationException("Invalid operation for AveragerFactoryWrapper.");
}
/**
* Not implemented. Throws UnsupportedOperationException.
*/
@Override
public byte[] getCacheKey()
{
throw new UnsupportedOperationException("Invalid operation for AveragerFactoryWrapper.");
}
/**
* Not implemented. Throws UnsupportedOperationException.
*/
@Override
public String getTypeName()
{
throw new UnsupportedOperationException("Invalid operation for AveragerFactoryWrapper.");
}
/**
* Not implemented. Throws UnsupportedOperationException.
*/
@Override
public int getMaxIntermediateSize()
{
throw new UnsupportedOperationException("Invalid operation for AveragerFactoryWrapper.");
}
}

View File

@ -0,0 +1,68 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import org.apache.druid.data.input.Row;
import org.apache.druid.java.util.common.guava.YieldingAccumulator;
import java.util.ArrayList;
import java.util.List;
/**
* Groups all the rows for a specific period together.
* Rows of each period are placed in a single {@link RowBucket} (timed through the dateTime field).
* (Assumpltion: Input arrives sorted by timestamp).
*/
public class BucketingAccumulator extends YieldingAccumulator<RowBucket, Row>
{
/* (non-Javadoc)
* @see YieldingAccumulator#accumulate(java.lang.Object, java.lang.Object)
*/
@Override
public RowBucket accumulate(RowBucket accumulated, Row in)
{
List<Row> rows;
if (accumulated == null) {
// first row, initializing
rows = new ArrayList<>();
accumulated = new RowBucket(in.getTimestamp(), rows);
} else if (accumulated.getNextBucket() != null) {
accumulated = accumulated.getNextBucket();
}
if (!accumulated.getDateTime().equals(in.getTimestamp())) {
// day change detected
rows = new ArrayList<>();
rows.add(in);
RowBucket nextBucket = new RowBucket(in.getTimestamp(), rows);
accumulated.setNextBucket(nextBucket);
yield();
} else {
// still on the same day
rows = accumulated.getRows();
rows.add(in);
}
return accumulated;
}
}

View File

@ -0,0 +1,62 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.druid.query.DefaultQueryMetrics;
import org.apache.druid.query.DruidMetrics;
public class DefaultMovingAverageQueryMetrics extends DefaultQueryMetrics<MovingAverageQuery> implements
MovingAverageQueryMetrics
{
public DefaultMovingAverageQueryMetrics(ObjectMapper jsonMapper)
{
super(jsonMapper);
}
@Override
public void query(MovingAverageQuery query)
{
super.query(query);
numDimensions(query);
numMetrics(query);
numComplexMetrics(query);
}
@Override
public void numDimensions(MovingAverageQuery query)
{
setDimension("numDimensions", String.valueOf(query.getDimensions().size()));
}
@Override
public void numMetrics(MovingAverageQuery query)
{
setDimension("numMetrics", String.valueOf(query.getAggregatorSpecs().size()));
}
@Override
public void numComplexMetrics(MovingAverageQuery query)
{
int numComplexAggs = DruidMetrics.findNumComplexAggs(query.getAggregatorSpecs());
setDimension("numComplexMetrics", String.valueOf(numComplexAggs));
}
}

View File

@ -0,0 +1,59 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.annotations.VisibleForTesting;
import com.google.inject.Inject;
import org.apache.druid.guice.LazySingleton;
import org.apache.druid.guice.annotations.Json;
import org.apache.druid.jackson.DefaultObjectMapper;
@LazySingleton
public class DefaultMovingAverageQueryMetricsFactory implements MovingAverageQueryMetricsFactory
{
private static final MovingAverageQueryMetricsFactory INSTANCE =
new DefaultMovingAverageQueryMetricsFactory(new DefaultObjectMapper());
/**
* Should be used only in tests, directly or indirectly (via {@link
* MovingAverageQueryToolChest#MovingAverageQueryToolChest}).
*/
@VisibleForTesting
public static MovingAverageQueryMetricsFactory instance()
{
return INSTANCE;
}
private final ObjectMapper jsonMapper;
@Inject
public DefaultMovingAverageQueryMetricsFactory(@Json ObjectMapper jsonMapper)
{
this.jsonMapper = jsonMapper;
}
@Override
public MovingAverageQueryMetrics makeMetrics()
{
return new DefaultMovingAverageQueryMetrics(jsonMapper);
}
}

View File

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import org.apache.druid.data.input.MapBasedRow;
import org.apache.druid.data.input.Row;
import org.apache.druid.query.dimension.DimensionSpec;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
public class MovingAverageHelper
{
/**
* @param dimensions A list of DimensionSpec in the specified in the query
* @param row The Row to be used for looking up dimension values
*
* @return A Map of dimension/value from the row
*/
public static Map<String, Object> getDimKeyFromRow(Collection<DimensionSpec> dimensions, Row row)
{
Map<String, Object> key = new HashMap<>();
Map<String, Object> event = ((MapBasedRow) row).getEvent();
for (DimensionSpec dimension : dimensions) {
key.put(dimension.getOutputName(), event.get(dimension.getOutputName()));
}
return key;
}
}

View File

@ -0,0 +1,312 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import org.apache.druid.data.input.MapBasedRow;
import org.apache.druid.data.input.Row;
import org.apache.druid.java.util.common.guava.Sequence;
import org.apache.druid.java.util.common.guava.Yielder;
import org.apache.druid.java.util.common.guava.Yielders;
import org.apache.druid.query.aggregation.Aggregator;
import org.apache.druid.query.aggregation.AggregatorFactory;
import org.apache.druid.query.aggregation.PostAggregator;
import org.apache.druid.query.dimension.DimensionSpec;
import org.apache.druid.query.movingaverage.averagers.Averager;
import org.apache.druid.query.movingaverage.averagers.AveragerFactory;
import org.apache.druid.segment.ColumnSelectorFactory;
import org.apache.druid.segment.ColumnValueSelector;
import org.apache.druid.segment.DimensionSelector;
import org.apache.druid.segment.NilColumnValueSelector;
import org.apache.druid.segment.column.ColumnCapabilities;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.stream.Collectors;
/**
* {@link MovingAverageIterable} iterates over days {@link RowBucket}, producing rows for each dimension combination,
* filling in missing entries with "empty" rows so that the averaging buckets have enough data to operate on.
* It then computes the moving average on the buckets and returns the row.
* See computeMovingAverage for more details.
*/
public class MovingAverageIterable implements Iterable<Row>
{
private final Sequence<RowBucket> seq;
private final List<DimensionSpec> dims;
private final List<AveragerFactory<?, ?>> factories;
private final Map<String, PostAggregator> postAggMap;
private final Map<String, AggregatorFactory> aggMap;
private final Map<String, Object> emptyEvents;
public MovingAverageIterable(
Sequence<RowBucket> buckets,
List<DimensionSpec> dims,
List<AveragerFactory<?, ?>> factories,
List<PostAggregator> postAggList,
List<AggregatorFactory> aggList
)
{
this.dims = dims;
this.factories = factories;
this.seq = buckets;
postAggMap = postAggList.stream().collect(Collectors.toMap(postAgg -> postAgg.getName(), postAgg -> postAgg));
aggMap = aggList.stream().collect(Collectors.toMap(agg -> agg.getName(), agg -> agg));
emptyEvents = generateEmptyEventsFromAggregators(aggMap, postAggMap);
}
// Build a list of empty events from Aggregators/PostAggregators to be used by Iterator to build fake rows.
// These fake rows will be used by computeMovingAverage() in skip=true mode.
// See emptyEventsCopy in internalNext() and computeMovingAverage() documentation.
private Map<String, Object> generateEmptyEventsFromAggregators(Map<String, AggregatorFactory> aggMap,
Map<String, PostAggregator> postAggMap)
{
Map<String, Object> emptyEvents = new LinkedHashMap<>();
aggMap.values().forEach(agg -> {
Aggregator aggFactorized = agg.factorize(getEmptyColumnSelectorFactory());
emptyEvents.put(agg.getName(), aggFactorized.get());
});
postAggMap.values().forEach(postAgg -> emptyEvents.put(postAgg.getName(), postAgg.compute(emptyEvents)));
return emptyEvents;
}
@Nonnull
private ColumnSelectorFactory getEmptyColumnSelectorFactory()
{
return new ColumnSelectorFactory()
{
@Override
public DimensionSelector makeDimensionSelector(DimensionSpec dimensionSpec)
{
// Generating empty records while aggregating on Filtered aggregators requires a dimension selector
// for initialization. This dimension selector is not actually used for generating values
return DimensionSelector.constant(null);
}
@Override
public ColumnValueSelector makeColumnValueSelector(String s)
{
return NilColumnValueSelector.instance();
}
@Override
public ColumnCapabilities getColumnCapabilities(String s)
{
return null;
}
};
}
/* (non-Javadoc)
* @see java.lang.Iterable#iterator()
*/
@Override
public Iterator<Row> iterator()
{
return new MovingAverageIterator(seq, dims, factories, emptyEvents, aggMap);
}
static class MovingAverageIterator implements Iterator<Row>
{
private final List<DimensionSpec> dims;
// Key: Row's dimension set. Value: Averager. See MovingAverageIterator#computeMovingAverage for more details.
private final Map<Map<String, Object>, List<Averager<?>>> averagers = new HashMap<>();
private final List<AveragerFactory<?, ?>> averagerFactories;
private Yielder<RowBucket> yielder;
private RowBucket cache = null;
private Iterator<Row> cacheIter;
private Iterator<Map<String, Object>> averagersKeysIter;
private Set<Map<String, Object>> seenKeys = new HashSet<>();
private Row saveNext;
private Map<String, AggregatorFactory> aggMap;
private Map<String, Object> emptyEvents;
public MovingAverageIterator(
Sequence<RowBucket> rows,
List<DimensionSpec> dims,
List<AveragerFactory<?, ?>> averagerFactories,
Map<String, Object> emptyEvents,
Map<String, AggregatorFactory> aggMap
)
{
this.dims = dims;
this.averagerFactories = averagerFactories;
this.emptyEvents = emptyEvents;
this.aggMap = aggMap;
yielder = Yielders.each(rows);
}
/* (non-Javadoc)
* @see java.util.Iterator#hasNext()
*/
@Override
public boolean hasNext()
{
if (saveNext != null) {
return true;
}
saveNext = internalNext();
return (saveNext != null);
}
/* (non-Javadoc)
* @see java.util.Iterator#next()
*/
@Override
public Row next()
{
if (!hasNext()) {
throw new NoSuchElementException();
}
Row retVal = saveNext;
saveNext = null;
return retVal;
}
private Row internalNext()
{
// Iterate until there is a row to return or Yielder is exahusted, in such a case return null.
// This is used in order to skip empty buckets (iterate to the next one).
while (true) {
if (cache == null && !yielder.isDone()) {
cache = yielder.get();
yielder = yielder.next(cache);
cacheIter = cache.getRows().iterator();
}
Row r;
// return rows from the cached RowBucket
if (cacheIter != null) {
if (cacheIter.hasNext()) {
r = cacheIter.next();
// Convert full event (key + metrics) to key
Map<String, Object> key = MovingAverageHelper.getDimKeyFromRow(dims, r);
seenKeys.add(key);
r = computeMovingAverage((MapBasedRow) r, false);
if (r != null) {
return r;
} else {
throw new NoSuchElementException();
}
} else {
Set<Map<String, Object>> averagerKeys = new HashSet<>(averagers.keySet());
averagerKeys.removeAll(seenKeys);
averagersKeysIter = averagerKeys.iterator();
cacheIter = null;
}
}
// return empty rows for unseen dimension combinations
if (averagersKeysIter != null) {
while (averagersKeysIter.hasNext()) {
Map<String, Object> dims = averagersKeysIter.next();
Map<String, Object> emptyEventsCopy = new HashMap<>(emptyEvents);
// Convert key to a full dummy event (key + dummy metrics).
dims.forEach((dim, value) -> emptyEventsCopy.put(dim, value));
r = computeMovingAverage(new MapBasedRow(cache.getDateTime(), emptyEventsCopy), true);
if (r != null) {
return r;
}
}
seenKeys.clear();
averagersKeysIter = null;
cache = null;
}
if (cacheIter == null && yielder.isDone()) {
// we should never get here. For some reason, there is
// no more work to do, so continuing to iterate will infinite loop
return null;
}
}
}
/**
* Compute and add any moving average columns.
*
* <p>Normally, the row passed in will be added to all the {@link Averager}'s and then results pulled
* from each averager. If skip is true, then the incoming row is actually a dummy value due to
* no data being present for this dimension combination in the current bucket. When this happens,
* {@link Averager#skip()} should be called instead of {@link Averager#addElement(Map, Map)}()} to force proper
* decaying of the average values.
*
* <p>Usually, the contents of key will be contained by the row R being passed in, but in the case of a
* dummy row, it's possible that the dimensions will be known but the row empty. Hence, the values are
* passed as two separate arguments.
*
* @param r The Row to operate on
* @param skip Indicates whether skip or add should be called
*
* @return The updated row containing averager results, or null if no averagers computed a result
*/
@Nullable
private Row computeMovingAverage(MapBasedRow r, boolean skip)
{
Map<String, Object> event = r.getEvent();
Map<String, Object> result = new HashMap<>(event);
Map<String, Object> key = MovingAverageHelper.getDimKeyFromRow(dims, r);
List<Averager<?>> avg = averagers.get(key);
// Initialize key's averagers.
if (avg == null) {
avg = averagerFactories.stream().map(af -> af.createAverager()).collect(Collectors.toList());
averagers.put(key, avg);
}
if (!skip) {
avg.forEach(af -> af.addElement(event, aggMap));
} else {
avg.forEach(af -> af.skip());
}
avg.forEach(af -> result.put(af.getName(), af.getResult()));
// At least one non-dimension value must be in the record for it to be valid.
if (result.entrySet().stream().anyMatch(e -> !key.containsKey(e.getKey()) && e.getValue() != null)) {
result.putAll(event);
return new MapBasedRow(r.getTimestamp(), result);
} else {
// No averagers returned anything. All buckets must be empty.
// skip this row.
return null;
}
}
}
}

View File

@ -0,0 +1,378 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonIgnore;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.annotation.JsonTypeName;
import com.google.common.base.Function;
import com.google.common.base.Functions;
import com.google.common.base.Preconditions;
import com.google.common.base.Predicate;
import com.google.common.collect.ImmutableList;
import org.apache.druid.common.config.NullHandling;
import org.apache.druid.data.input.Row;
import org.apache.druid.java.util.common.IAE;
import org.apache.druid.java.util.common.granularity.Granularity;
import org.apache.druid.java.util.common.guava.Sequence;
import org.apache.druid.java.util.common.guava.Sequences;
import org.apache.druid.query.BaseQuery;
import org.apache.druid.query.DataSource;
import org.apache.druid.query.Query;
import org.apache.druid.query.aggregation.AggregatorFactory;
import org.apache.druid.query.aggregation.PostAggregator;
import org.apache.druid.query.dimension.DimensionSpec;
import org.apache.druid.query.filter.DimFilter;
import org.apache.druid.query.groupby.having.HavingSpec;
import org.apache.druid.query.groupby.orderby.LimitSpec;
import org.apache.druid.query.groupby.orderby.NoopLimitSpec;
import org.apache.druid.query.movingaverage.averagers.AveragerFactory;
import org.apache.druid.query.spec.QuerySegmentSpec;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
/**
* Class that defines druid MovingAverage query fields
*/
@JsonTypeName("movingAverage")
public class MovingAverageQuery extends BaseQuery<Row>
{
public static final String MOVING_AVG_QUERY_TYPE = "movingAverage";
public static final String CTX_KEY_SORT_BY_DIMS_FIRST = "sortByDimsFirst";
private final LimitSpec limitSpec;
private final HavingSpec havingSpec;
private final DimFilter dimFilter;
private final Function<Sequence<Row>, Sequence<Row>> limitFn;
private final Granularity granularity;
private final List<DimensionSpec> dimensions;
private final List<AggregatorFactory> aggregatorSpecs;
private final List<PostAggregator> postAggregatorSpecs;
private final List<AveragerFactory<?, ?>> averagerSpecs;
private final List<PostAggregator> postAveragerSpecs;
@JsonCreator
public MovingAverageQuery(
@JsonProperty("dataSource") DataSource dataSource,
@JsonProperty("intervals") QuerySegmentSpec querySegmentSpec,
@JsonProperty("filter") DimFilter dimFilter,
@JsonProperty("granularity") Granularity granularity,
@JsonProperty("dimensions") List<DimensionSpec> dimensions,
@JsonProperty("aggregations") List<AggregatorFactory> aggregatorSpecs,
@JsonProperty("postAggregations") List<PostAggregator> postAggregatorSpecs,
@JsonProperty("having") HavingSpec havingSpec,
@JsonProperty("averagers") List<AveragerFactory<?, ?>> averagerSpecs,
@JsonProperty("postAveragers") List<PostAggregator> postAveragerSpecs,
@JsonProperty("limitSpec") LimitSpec limitSpec,
@JsonProperty("context") Map<String, Object> context
)
{
super(dataSource, querySegmentSpec, false, context);
//TBD: Implement null awareness to respect the contract of this flag.
Preconditions.checkArgument(NullHandling.replaceWithDefault(), "movingAverage does not support druid.generic.useDefaultValueForNull=false");
this.dimFilter = dimFilter;
this.granularity = granularity;
this.dimensions = dimensions == null ? ImmutableList.of() : dimensions;
for (DimensionSpec spec : this.dimensions) {
Preconditions.checkArgument(spec != null, "dimensions has null DimensionSpec");
}
this.aggregatorSpecs = aggregatorSpecs == null ? ImmutableList.of() : aggregatorSpecs;
this.postAggregatorSpecs = postAggregatorSpecs == null ? ImmutableList.of() : postAggregatorSpecs;
this.averagerSpecs = averagerSpecs == null ? ImmutableList.of() : averagerSpecs;
this.postAveragerSpecs = postAveragerSpecs == null ? ImmutableList.of() : postAveragerSpecs;
this.havingSpec = havingSpec;
this.limitSpec = (limitSpec == null) ? NoopLimitSpec.INSTANCE : limitSpec;
Preconditions.checkNotNull(this.granularity, "Must specify a granularity");
verifyOutputNames(this.dimensions, this.aggregatorSpecs, this.postAggregatorSpecs);
// build combined list of aggregators and averagers so that limit spec building is happy
List<AggregatorFactory> combinedAggregatorSpecs = new ArrayList<>();
combinedAggregatorSpecs.addAll(this.aggregatorSpecs);
for (AveragerFactory<?, ?> avg : this.averagerSpecs) {
combinedAggregatorSpecs.add(new AveragerFactoryWrapper(avg, ""));
}
Function<Sequence<Row>, Sequence<Row>> postProcFn =
this.limitSpec.build(
this.dimensions,
combinedAggregatorSpecs,
this.postAggregatorSpecs,
this.granularity,
getContextSortByDimsFirst()
);
if (havingSpec != null) {
postProcFn = Functions.compose(
postProcFn,
new Function<Sequence<Row>, Sequence<Row>>()
{
@Override
public Sequence<Row> apply(Sequence<Row> input)
{
return Sequences.filter(
input,
new Predicate<Row>()
{
@Override
public boolean apply(Row input)
{
return MovingAverageQuery.this.havingSpec.eval(input);
}
}
);
}
}
);
}
this.limitFn = postProcFn;
}
private static void verifyOutputNames(
List<DimensionSpec> dimensions,
List<AggregatorFactory> aggregators,
List<PostAggregator> postAggregators
)
{
final Set<String> outputNames = new HashSet<>();
for (DimensionSpec dimension : dimensions) {
if (!outputNames.add(dimension.getOutputName())) {
throw new IAE("Duplicate output name[%s]", dimension.getOutputName());
}
}
for (AggregatorFactory aggregator : aggregators) {
if (!outputNames.add(aggregator.getName())) {
throw new IAE("Duplicate output name[%s]", aggregator.getName());
}
}
for (PostAggregator postAggregator : postAggregators) {
if (!outputNames.add(postAggregator.getName())) {
throw new IAE("Duplicate output name[%s]", postAggregator.getName());
}
}
}
/**
* A private constructor that avoids all of the various state checks. Used by the with*() methods where the checks
* have already passed in order for the object to exist.
*/
private MovingAverageQuery(
DataSource dataSource,
QuerySegmentSpec querySegmentSpec,
DimFilter dimFilter,
Granularity granularity,
List<DimensionSpec> dimensions,
List<AggregatorFactory> aggregatorSpecs,
List<AveragerFactory<?, ?>> averagerSpecs,
List<PostAggregator> postAggregatorSpecs,
List<PostAggregator> postAveragerSpecs,
HavingSpec havingSpec,
LimitSpec orderBySpec,
Function<Sequence<Row>, Sequence<Row>> limitFn,
Map<String, Object> context
)
{
super(dataSource, querySegmentSpec, false, context);
this.dimFilter = dimFilter;
this.granularity = granularity;
this.dimensions = dimensions;
this.aggregatorSpecs = aggregatorSpecs;
this.averagerSpecs = averagerSpecs;
this.postAggregatorSpecs = postAggregatorSpecs;
this.postAveragerSpecs = postAveragerSpecs;
this.havingSpec = havingSpec;
this.limitSpec = orderBySpec;
this.limitFn = limitFn;
}
@Override
public boolean hasFilters()
{
return dimFilter != null;
}
@Override
public String getType()
{
return MOVING_AVG_QUERY_TYPE;
}
@JsonIgnore
public boolean getContextSortByDimsFirst()
{
return getContextBoolean(CTX_KEY_SORT_BY_DIMS_FIRST, false);
}
@Override
@JsonProperty
public DimFilter getFilter()
{
return dimFilter;
}
@Override
@JsonProperty
public Granularity getGranularity()
{
return granularity;
}
@JsonProperty
public List<DimensionSpec> getDimensions()
{
return dimensions;
}
@JsonProperty("aggregations")
public List<AggregatorFactory> getAggregatorSpecs()
{
return aggregatorSpecs;
}
@JsonProperty("averagers")
public List<AveragerFactory<?, ?>> getAveragerSpecs()
{
return averagerSpecs;
}
@JsonProperty("postAggregations")
public List<PostAggregator> getPostAggregatorSpecs()
{
return postAggregatorSpecs;
}
@JsonProperty("postAveragers")
public List<PostAggregator> getPostAveragerSpecs()
{
return postAveragerSpecs;
}
@JsonProperty("having")
public HavingSpec getHavingSpec()
{
return havingSpec;
}
@JsonProperty
public LimitSpec getLimitSpec()
{
return limitSpec;
}
@Override
public MovingAverageQuery withOverriddenContext(Map contextOverride)
{
return new MovingAverageQuery(
getDataSource(),
getQuerySegmentSpec(),
dimFilter,
granularity,
dimensions,
aggregatorSpecs,
averagerSpecs,
postAggregatorSpecs,
postAveragerSpecs,
havingSpec,
limitSpec,
limitFn,
computeOverridenContext(contextOverride)
);
}
@Override
public MovingAverageQuery withQuerySegmentSpec(QuerySegmentSpec spec)
{
return new MovingAverageQuery(
getDataSource(),
spec,
dimFilter,
granularity,
dimensions,
aggregatorSpecs,
averagerSpecs,
postAggregatorSpecs,
postAveragerSpecs,
havingSpec,
limitSpec,
limitFn,
getContext()
);
}
@Override
public Query<Row> withDataSource(DataSource dataSource)
{
return new MovingAverageQuery(
dataSource,
getQuerySegmentSpec(),
dimFilter,
granularity,
dimensions,
aggregatorSpecs,
averagerSpecs,
postAggregatorSpecs,
postAveragerSpecs,
havingSpec,
limitSpec,
limitFn,
getContext()
);
}
public Query<Row> withPostAveragers(List<PostAggregator> postAveragerSpecs)
{
return new MovingAverageQuery(
getDataSource(),
getQuerySegmentSpec(),
dimFilter,
granularity,
dimensions,
aggregatorSpecs,
averagerSpecs,
postAggregatorSpecs,
postAveragerSpecs,
havingSpec,
limitSpec,
limitFn,
getContext()
);
}
public Sequence<Row> applyLimit(Sequence<Row> results)
{
return limitFn.apply(results);
}
}

View File

@ -0,0 +1,42 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import org.apache.druid.query.QueryMetrics;
public interface MovingAverageQueryMetrics extends QueryMetrics<MovingAverageQuery>
{
/**
* Sets the size of {@link MovingAverageQuery#getDimensions()} of the given query as dimension.
*/
void numDimensions(MovingAverageQuery query);
/**
* Sets the number of metrics of the given groupBy query as dimension.
*/
void numMetrics(MovingAverageQuery query);
/**
* Sets the number of "complex" metrics of the given groupBy query as dimension. By default it is assumed that
* "complex" metric is a metric of not long or double type, but it could be redefined in the implementation of this
* method.
*/
void numComplexMetrics(MovingAverageQuery query);
}

View File

@ -0,0 +1,36 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
/**
* Implementations could be injected using
* <p>
* PolyBind
* .optionBinder(binder, Key.get(MovingAverageQueryMetricsFactory.class))
* .addBinding("myCustomMovingAverageQueryMetricsFactory")
* .to(MyCustomMovingAverageQueryMetricsFactory.class);
* <p>
* And then setting property:
* druid.query.movingavgquery.queryMetricsFactory=myCustomMovingAverageQueryMetricsFactory
*/
public interface MovingAverageQueryMetricsFactory
{
MovingAverageQueryMetrics makeMetrics();
}

View File

@ -0,0 +1,61 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import com.fasterxml.jackson.databind.Module;
import com.fasterxml.jackson.databind.jsontype.NamedType;
import com.fasterxml.jackson.databind.module.SimpleModule;
import com.google.inject.Binder;
import com.google.inject.multibindings.MapBinder;
import org.apache.druid.guice.DruidBinders;
import org.apache.druid.guice.LazySingleton;
import org.apache.druid.initialization.DruidModule;
import org.apache.druid.query.Query;
import org.apache.druid.query.QueryToolChest;
import java.util.Collections;
import java.util.List;
public class MovingAverageQueryModule implements DruidModule
{
@Override
public void configure(Binder binder)
{
MapBinder<Class<? extends Query>, QueryToolChest> toolChests = DruidBinders.queryToolChestBinder(binder);
//Bind the query toolchest to the query class and add the binding to toolchest
toolChests.addBinding(MovingAverageQuery.class).to(MovingAverageQueryToolChest.class);
//Bind the query toolchest to binder
binder.bind(MovingAverageQueryToolChest.class).in(LazySingleton.class);
}
@Override
public List<? extends Module> getJacksonModules()
{
return Collections.<Module>singletonList(new SimpleModule("MovingAverageQueryModule")
.registerSubtypes(new NamedType(
MovingAverageQuery.class,
"movingAverage"
)));
}
}

View File

@ -0,0 +1,235 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import com.google.common.base.Function;
import com.google.common.base.Throwables;
import com.google.common.collect.ImmutableMap;
import org.apache.druid.data.input.MapBasedRow;
import org.apache.druid.data.input.Row;
import org.apache.druid.java.util.common.DateTimes;
import org.apache.druid.java.util.common.ISE;
import org.apache.druid.java.util.common.granularity.PeriodGranularity;
import org.apache.druid.java.util.common.guava.Sequence;
import org.apache.druid.java.util.common.guava.Sequences;
import org.apache.druid.query.DataSource;
import org.apache.druid.query.QueryContexts;
import org.apache.druid.query.QueryDataSource;
import org.apache.druid.query.QueryPlus;
import org.apache.druid.query.QueryRunner;
import org.apache.druid.query.QuerySegmentWalker;
import org.apache.druid.query.Result;
import org.apache.druid.query.TableDataSource;
import org.apache.druid.query.UnionDataSource;
import org.apache.druid.query.groupby.GroupByQuery;
import org.apache.druid.query.movingaverage.averagers.AveragerFactory;
import org.apache.druid.query.spec.MultipleIntervalSegmentSpec;
import org.apache.druid.query.timeseries.TimeseriesQuery;
import org.apache.druid.query.timeseries.TimeseriesResultValue;
import org.apache.druid.server.QueryStats;
import org.apache.druid.server.RequestLogLine;
import org.apache.druid.server.log.RequestLogger;
import org.joda.time.Interval;
import org.joda.time.Period;
import javax.annotation.Nullable;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.concurrent.atomic.AtomicLong;
import java.util.stream.Collectors;
/**
* The QueryRunner for MovingAverage query.
* High level flow:
* 1. Invokes an inner groupBy query (Or timeseries for no dimensions scenario) to get Aggregations/PostAggregtions.
* 2. Result is passed to {@link RowBucketIterable}, which groups rows of all dimension combinations into period-based (e.g. daily) buckets of rows ({@link RowBucket}).
* 3. The sequence is passed to {@link MovingAverageIterable}, which performs the main part of the query of adding Averagers computation into the records.
* 4. Finishes up by applying post averagers, removing redundant dates, and applying post phases (having, sorting, limits).
*/
public class MovingAverageQueryRunner implements QueryRunner<Row>
{
public static final String QUERY_FAIL_TIME = "queryFailTime";
public static final String QUERY_TOTAL_BYTES_GATHERED = "queryTotalBytesGathered";
private final QuerySegmentWalker walker;
private final RequestLogger requestLogger;
public MovingAverageQueryRunner(
@Nullable QuerySegmentWalker walker,
RequestLogger requestLogger
)
{
this.walker = walker;
this.requestLogger = requestLogger;
}
@Override
public Sequence<Row> run(QueryPlus<Row> query, Map<String, Object> responseContext)
{
MovingAverageQuery maq = (MovingAverageQuery) query.getQuery();
List<Interval> intervals;
final Period period;
// Get the largest bucket from the list of averagers
Optional<Integer> opt =
maq.getAveragerSpecs().stream().map(AveragerFactory::getNumBuckets).max(Integer::compare);
int buckets = opt.orElse(0);
//Extend the interval beginning by specified bucket - 1
if (maq.getGranularity() instanceof PeriodGranularity) {
period = ((PeriodGranularity) maq.getGranularity()).getPeriod();
int offset = buckets <= 0 ? 0 : (1 - buckets);
intervals = maq.getIntervals()
.stream()
.map(i -> new Interval(i.getStart().withPeriodAdded(period, offset), i.getEnd()))
.collect(Collectors.toList());
} else {
throw new ISE("Only PeriodGranulaity is supported for movingAverage queries");
}
Sequence<Row> resultsSeq;
DataSource dataSource = maq.getDataSource();
if (maq.getDimensions() != null && !maq.getDimensions().isEmpty() &&
(dataSource instanceof TableDataSource || dataSource instanceof UnionDataSource ||
dataSource instanceof QueryDataSource)) {
// build groupBy query from movingAverage query
GroupByQuery.Builder builder = GroupByQuery.builder()
.setDataSource(dataSource)
.setInterval(intervals)
.setDimFilter(maq.getFilter())
.setGranularity(maq.getGranularity())
.setDimensions(maq.getDimensions())
.setAggregatorSpecs(maq.getAggregatorSpecs())
.setPostAggregatorSpecs(maq.getPostAggregatorSpecs())
.setContext(maq.getContext());
GroupByQuery gbq = builder.build();
HashMap<String, Object> gbqResponse = new HashMap<>();
gbqResponse.put(QUERY_FAIL_TIME, System.currentTimeMillis() + QueryContexts.getTimeout(gbq));
gbqResponse.put(QUERY_TOTAL_BYTES_GATHERED, new AtomicLong());
Sequence<Row> results = gbq.getRunner(walker).run(QueryPlus.wrap(gbq), gbqResponse);
try {
// use localhost for remote address
requestLogger.logNativeQuery(RequestLogLine.forNative(
gbq,
DateTimes.nowUtc(),
"127.0.0.1",
new QueryStats(
ImmutableMap.of(
"query/time", 0,
"query/bytes", 0,
"success", true
))
));
}
catch (Exception e) {
throw Throwables.propagate(e);
}
resultsSeq = results;
} else {
// no dimensions, so optimize this as a TimeSeries
TimeseriesQuery tsq = new TimeseriesQuery(
dataSource,
new MultipleIntervalSegmentSpec(intervals),
false,
null,
maq.getFilter(),
maq.getGranularity(),
maq.getAggregatorSpecs(),
maq.getPostAggregatorSpecs(),
0,
maq.getContext()
);
HashMap<String, Object> tsqResponse = new HashMap<>();
tsqResponse.put(QUERY_FAIL_TIME, System.currentTimeMillis() + QueryContexts.getTimeout(tsq));
tsqResponse.put(QUERY_TOTAL_BYTES_GATHERED, new AtomicLong());
Sequence<Result<TimeseriesResultValue>> results = tsq.getRunner(walker).run(QueryPlus.wrap(tsq), tsqResponse);
try {
// use localhost for remote address
requestLogger.logNativeQuery(RequestLogLine.forNative(
tsq,
DateTimes.nowUtc(),
"127.0.0.1",
new QueryStats(
ImmutableMap.of(
"query/time", 0,
"query/bytes", 0,
"success", true
))
));
}
catch (Exception e) {
throw Throwables.propagate(e);
}
resultsSeq = Sequences.map(results, new TimeseriesResultToRow());
}
// Process into period buckets
Sequence<RowBucket> bucketedMovingAvgResults =
Sequences.simple(new RowBucketIterable(resultsSeq, intervals, period));
// Apply the windows analysis functions
Sequence<Row> movingAvgResults = Sequences.simple(
new MovingAverageIterable(
bucketedMovingAvgResults,
maq.getDimensions(),
maq.getAveragerSpecs(),
maq.getPostAggregatorSpecs(),
maq.getAggregatorSpecs()
));
// Apply any postAveragers
Sequence<Row> movingAvgResultsWithPostAveragers =
Sequences.map(movingAvgResults, new PostAveragerAggregatorCalculator(maq));
// remove rows outside the reporting window
List<Interval> reportingIntervals = maq.getIntervals();
movingAvgResults =
Sequences.filter(
movingAvgResultsWithPostAveragers,
row -> reportingIntervals.stream().anyMatch(i -> i.contains(row.getTimestamp()))
);
// Apply any having, sorting, and limits
movingAvgResults = ((MovingAverageQuery) maq).applyLimit(movingAvgResults);
return movingAvgResults;
}
static class TimeseriesResultToRow implements Function<Result<TimeseriesResultValue>, Row>
{
@Override
public Row apply(Result<TimeseriesResultValue> lookbackResult)
{
Map<String, Object> event = lookbackResult.getValue().getBaseObject();
MapBasedRow row = new MapBasedRow(lookbackResult.getTimestamp(), event);
return row;
}
}
}

View File

@ -0,0 +1,135 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import com.fasterxml.jackson.core.type.TypeReference;
import com.google.common.base.Function;
import com.google.common.base.Functions;
import com.google.inject.Inject;
import com.google.inject.Provider;
import org.apache.druid.data.input.MapBasedRow;
import org.apache.druid.data.input.Row;
import org.apache.druid.query.QueryMetrics;
import org.apache.druid.query.QueryRunner;
import org.apache.druid.query.QuerySegmentWalker;
import org.apache.druid.query.QueryToolChest;
import org.apache.druid.query.aggregation.AggregatorFactory;
import org.apache.druid.query.aggregation.MetricManipulationFn;
import org.apache.druid.query.movingaverage.averagers.AveragerFactory;
import org.apache.druid.server.log.RequestLogger;
import java.util.HashMap;
import java.util.Map;
/**
* The QueryToolChest for MovingAverage Query
*/
public class MovingAverageQueryToolChest extends QueryToolChest<Row, MovingAverageQuery>
{
private final QuerySegmentWalker walker;
private final RequestLogger requestLogger;
private final MovingAverageQueryMetricsFactory movingAverageQueryMetricsFactory;
/**
* Construct a MovingAverageQueryToolChest for processing moving-average queries.
* MovingAverage queries are expected to be processed on broker nodes and never hit historical nodes.
*
* @param walker
* @param requestLogger
*/
@Inject
public MovingAverageQueryToolChest(Provider<QuerySegmentWalker> walker, RequestLogger requestLogger)
{
this.walker = walker.get();
this.requestLogger = requestLogger;
this.movingAverageQueryMetricsFactory = DefaultMovingAverageQueryMetricsFactory.instance();
}
@Override
public QueryRunner<Row> mergeResults(QueryRunner<Row> runner)
{
return new MovingAverageQueryRunner(walker, requestLogger);
}
@Override
public QueryMetrics<? super MovingAverageQuery> makeMetrics(MovingAverageQuery query)
{
MovingAverageQueryMetrics movingAverageQueryMetrics = movingAverageQueryMetricsFactory.makeMetrics();
movingAverageQueryMetrics.query(query);
return movingAverageQueryMetrics;
}
@Override
public Function<Row, Row> makePostComputeManipulatorFn(MovingAverageQuery query, MetricManipulationFn fn)
{
return new Function<Row, Row>()
{
@Override
public Row apply(Row result)
{
MapBasedRow mRow = (MapBasedRow) result;
final Map<String, Object> values = new HashMap<>(mRow.getEvent());
for (AggregatorFactory agg : query.getAggregatorSpecs()) {
Object aggVal = values.get(agg.getName());
if (aggVal != null) {
values.put(agg.getName(), fn.manipulate(agg, aggVal));
} else {
values.put(agg.getName(), null);
}
}
for (AveragerFactory<?, ?> avg : query.getAveragerSpecs()) {
Object aggVal = values.get(avg.getName());
if (aggVal != null) {
values.put(avg.getName(), fn.manipulate(new AveragerFactoryWrapper<>(avg, avg.getName() + "_"), aggVal));
} else {
values.put(avg.getName(), null);
}
}
return new MapBasedRow(result.getTimestamp(), values);
}
};
}
@Override
public TypeReference<Row> getResultTypeReference()
{
return new TypeReference<Row>()
{
};
}
@Override
public Function<Row, Row> makePreComputeManipulatorFn(MovingAverageQuery query, MetricManipulationFn fn)
{
return Functions.identity();
}
}

View File

@ -0,0 +1,63 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import com.google.common.base.Function;
import com.google.common.collect.Maps;
import org.apache.druid.data.input.MapBasedRow;
import org.apache.druid.data.input.Row;
import org.apache.druid.query.aggregation.PostAggregator;
import java.util.List;
import java.util.Map;
/**
* Function that can be applied to a Sequence to calculate PostAverager results
*/
public class PostAveragerAggregatorCalculator implements Function<Row, Row>
{
private final List<PostAggregator> postAveragers;
public PostAveragerAggregatorCalculator(MovingAverageQuery maq)
{
this.postAveragers = maq.getPostAveragerSpecs();
}
@Override
public Row apply(final Row row)
{
if (postAveragers.isEmpty()) {
return row;
}
final Map<String, Object> newMap;
newMap = Maps.newLinkedHashMap(((MapBasedRow) row).getEvent());
for (PostAggregator postAverager : postAveragers) {
boolean allColsPresent = postAverager.getDependentFields().stream().allMatch(c -> newMap.get(c) != null);
newMap.put(postAverager.getName(), allColsPresent ? postAverager.compute(newMap) : null);
}
return new MapBasedRow(row.getTimestamp(), newMap);
}
}

View File

@ -0,0 +1,62 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import org.apache.druid.data.input.Row;
import org.joda.time.DateTime;
import java.util.List;
/**
* Represents a set of rows for a specific date
* Each RowBucket is an element in a list (holds a pointer to the next RowBucket)
*/
public class RowBucket
{
private final DateTime dateTime;
private final List<Row> rows;
private RowBucket nextBucket = null;
public RowBucket(DateTime dateTime, List<Row> rows)
{
this.dateTime = dateTime;
this.rows = rows;
}
public DateTime getDateTime()
{
return dateTime;
}
public List<Row> getRows()
{
return rows;
}
public RowBucket getNextBucket()
{
return nextBucket;
}
public void setNextBucket(RowBucket nextRow)
{
this.nextBucket = nextRow;
}
}

View File

@ -0,0 +1,155 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import org.apache.druid.data.input.Row;
import org.apache.druid.java.util.common.guava.Sequence;
import org.apache.druid.java.util.common.guava.Yielder;
import org.joda.time.DateTime;
import org.joda.time.Interval;
import org.joda.time.Period;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;
/**
* An iterator which takes list of rows ({@link Sequence<Row>}) and generates a new list of {@link RowBucket}s from it.
*
* It calls {@link BucketingAccumulator} for naive bucketing to buckets of periods,
* But does more subtle logic to cover edge cases, such as:
* - Handling periods with no rows.
* - Handling last record.
*
* Please notice this is being called by {@link MovingAverageIterable.MovingAverageIterator#internalNext()}
* and the logic for skipping records is comprised by the interaction between the two classes.
*/
public class RowBucketIterable implements Iterable<RowBucket>
{
public final Sequence<Row> seq;
private List<Interval> intervals;
private Period period;
public RowBucketIterable(Sequence<Row> seq, List<Interval> intervals, Period period)
{
this.seq = seq;
this.period = period;
this.intervals = intervals;
}
/* (non-Javadoc)
* @see java.lang.Iterable#iterator()
*/
@Override
public Iterator<RowBucket> iterator()
{
return new RowBucketIterator(seq, intervals, period);
}
static class RowBucketIterator implements Iterator<RowBucket>
{
private Yielder<RowBucket> yielder;
private DateTime endTime;
private DateTime expectedBucket;
private Period period;
private int intervalIndex = 0;
private List<Interval> intervals;
private boolean processedLastRow = false;
private boolean processedExtraRow = false;
public RowBucketIterator(Sequence<Row> rows, List<Interval> intervals, Period period)
{
this.period = period;
this.intervals = intervals;
expectedBucket = intervals.get(intervalIndex).getStart();
endTime = intervals.get(intervals.size() - 1).getEnd();
yielder = rows.toYielder(null, new BucketingAccumulator());
}
/* (non-Javadoc)
* @see java.util.Iterator#hasNext()
*/
@Override
public boolean hasNext()
{
return expectedBucket.compareTo(endTime) < 0 || !this.yielder.isDone();
}
/* (non-Javadoc)
* @see java.util.Iterator#next()
*/
@Override
public RowBucket next()
{
RowBucket currentBucket = yielder.get();
// Iterate to next interval
if (expectedBucket.compareTo(intervals.get(intervalIndex).getEnd()) >= 0) {
intervalIndex++;
if (intervalIndex < intervals.size()) {
expectedBucket = intervals.get(intervalIndex).getStart();
}
}
// currentBucket > expectedBucket (No rows found for period). Iterate to next period.
if (currentBucket != null && currentBucket.getDateTime().compareTo(expectedBucket) > 0) {
currentBucket = new RowBucket(expectedBucket, Collections.emptyList());
expectedBucket = expectedBucket.plus(period);
return currentBucket;
}
if (!yielder.isDone()) {
// standard case. return regular row
yielder = yielder.next(currentBucket);
expectedBucket = expectedBucket.plus(period);
return currentBucket;
} else if (!processedLastRow && yielder.get() != null && yielder.get().getNextBucket() == null) {
// yielder.isDone, processing last row
processedLastRow = true;
expectedBucket = expectedBucket.plus(period);
return currentBucket;
} else if (!processedExtraRow && yielder.get() != null && yielder.get().getNextBucket() != null) {
RowBucket lastRow = yielder.get().getNextBucket();
if (lastRow.getDateTime().compareTo(expectedBucket) > 0) {
lastRow = new RowBucket(expectedBucket, Collections.emptyList());
expectedBucket = expectedBucket.plus(period);
return lastRow;
}
// yielder is done, processing newBucket
processedExtraRow = true;
expectedBucket = expectedBucket.plus(period);
return lastRow;
} else if (expectedBucket.compareTo(endTime) < 0) {
// add any trailing blank rows
currentBucket = new RowBucket(expectedBucket, Collections.emptyList());
expectedBucket = expectedBucket.plus(period);
return currentBucket;
} else {
// we should never get here
throw new NoSuchElementException();
}
}
}
}

View File

@ -0,0 +1,57 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.apache.druid.query.aggregation.AggregatorFactory;
import java.util.Map;
/**
* Interface for an averager
*
* @param <R> The return type of the averager
*/
public interface Averager<R>
{
/**
* Add a row to the window being operated on
*
* @param e The row to add
* @param aggMap The Map of AggregatorFactory used to determine if the metric should to be finalized
*/
void addElement(Map<String, Object> e, Map<String, AggregatorFactory> aggMap);
/**
* There is a missing row, so record a missing entry in the window
*/
void skip();
/**
* Compute the resulting "average" over the collected window
*
* @return the "average" over the window of buckets
*/
R getResult();
/**
* @return the name
*/
String getName();
}

View File

@ -0,0 +1,106 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import com.fasterxml.jackson.annotation.JsonSubTypes;
import com.fasterxml.jackson.annotation.JsonTypeInfo;
import java.util.Comparator;
import java.util.List;
/**
* Interface representing Averager in the movingAverage query.
*
* @param <R> Type returned by the underlying averager.
* @param <F> Type of finalized value.
*/
@JsonTypeInfo(use = JsonTypeInfo.Id.NAME, property = "type")
@JsonSubTypes(value = {
@JsonSubTypes.Type(name = "constant", value = ConstantAveragerFactory.class),
@JsonSubTypes.Type(name = "doubleMean", value = DoubleMeanAveragerFactory.class),
@JsonSubTypes.Type(name = "doubleMeanNoNulls", value = DoubleMeanNoNullAveragerFactory.class),
@JsonSubTypes.Type(name = "doubleMax", value = DoubleMaxAveragerFactory.class),
@JsonSubTypes.Type(name = "doubleMin", value = DoubleMinAveragerFactory.class),
@JsonSubTypes.Type(name = "longMean", value = LongMeanAveragerFactory.class),
@JsonSubTypes.Type(name = "longMeanNoNulls", value = LongMeanNoNullAveragerFactory.class),
@JsonSubTypes.Type(name = "longMax", value = LongMaxAveragerFactory.class),
@JsonSubTypes.Type(name = "longMin", value = LongMinAveragerFactory.class)
})
public interface AveragerFactory<R, F>
{
int DEFAULT_PERIOD = 1;
/**
* Gets the column name that will be populated by the Averager
*
* @return The column name
*/
String getName();
/**
* Returns the window size over which the averaging calculations will be
* performed. Size is computed in terms of buckets rather than absolute time.
*
* @return The window size
*/
int getNumBuckets();
/**
* Returns the cycle size (number of periods to skip during averaging calculations).
*
* @return The cycle size
*/
int getCycleSize();
/**
* Create an Averager for a specific dimension combination.
*
* @return The {@link Averager}
*/
Averager<R> createAverager();
/**
* Gets the list of dependent fields that will be used by this Averager. Most
* {@link Averager}s depend on only a single field from the underlying query, but
* that is not required. This method allow the required fields to be communicated
* back to the main query so that validation to enforce the fields presence can
* be accomplished.
*
* @return A list of field names
*/
List<String> getDependentFields();
/**
* Returns a {@link Comparator} that can be used to compare result values for
* purposes of sorting the end result of the query.
*
* @return A {@link Comparator}
*/
Comparator<R> getComparator();
/**
* Finalize result value.
*
* @param val the value to finalize.
*
* @return The finalized value.
*/
F finalizeComputation(R val);
}

View File

@ -0,0 +1,192 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.apache.druid.query.aggregation.AggregatorFactory;
import java.lang.reflect.Array;
import java.util.Map;
/**
* Common base class available for use by averagers. The base class implements methods that
* capture incoming and skipped rows and store them in an array, to be used later for
* calculating the actual value.
*
* @param <I> The type of intermediate value to be retrieved from the row and stored
* @param <R> The type of result the averager is expected to produce
*/
public abstract class BaseAverager<I, R extends Object> implements Averager<R>
{
final int numBuckets;
final int cycleSize;
private final String name;
private final String fieldName;
final I[] buckets;
private int index;
/**
* {@link BaseAverager#startFrom} is needed because `buckets` field is a fixed array, not a list.
* It makes computeResults() start from the correct bucket in the array.
*/
int startFrom = 0;
/**
* @param storageType The class to use for storing intermediate values
* @param numBuckets The number of buckets to include in the window being aggregated
* @param name The name of the resulting metric
* @param fieldName The field to extra from incoming rows and stored in the window cache
* @param cycleSize Cycle group size. Used to calculate day-of-week option. Default=1 (single element in group).
*/
public BaseAverager(Class<I> storageType, int numBuckets, String name, String fieldName, int cycleSize)
{
this.numBuckets = numBuckets;
this.name = name;
this.fieldName = fieldName;
this.index = 0;
@SuppressWarnings("unchecked")
final I[] array = (I[]) Array.newInstance(storageType, numBuckets);
this.buckets = array;
this.cycleSize = cycleSize;
}
/* (non-Javadoc)
* @see Averager#addElement(java.util.Map, java.util.Map)
*/
@SuppressWarnings("unchecked")
@Override
public void addElement(Map<String, Object> e, Map<String, AggregatorFactory> a)
{
Object metric = e.get(fieldName);
I finalMetric;
if (a.containsKey(fieldName)) {
AggregatorFactory af = a.get(fieldName);
finalMetric = metric != null ? (I) af.finalizeComputation(metric) : null;
} else {
finalMetric = (I) metric;
}
buckets[index++] = finalMetric;
index %= numBuckets;
}
/* (non-Javadoc)
* @see Averager#skip()
*/
@Override
public void skip()
{
buckets[index++] = null;
index %= numBuckets;
}
/* (non-Javadoc)
* @see Averager#getResult()
*/
@Override
public R getResult()
{
if (!hasData()) {
return null;
}
return computeResult();
}
/**
* Compute the result value to be returned by getResult.
*
* <p>This routine will only be called when there is valid data within the window
* and doesn't need to worry about detecting the case where no data should be returned.
*
* <p>
* The method typically should use {@link #getBuckets()} to retrieve the set of buckets
* within the window and then compute a value based on those. It should expect nulls within
* the array, indicating buckets where no row was found for the dimension combination. It is
* up to the actual implementation to determin how to evaluate those nulls.
*
* <p>
* The type returned is NOT required to be the same type as the intermediary value. For example,
* the intermediate value could be a Sketch, but the result a Long.
*
* @return the computed result
*/
protected abstract R computeResult();
/* (non-Javadoc)
* @see Averager#getName()
*/
@Override
public String getName()
{
return name;
}
/**
* Returns the fieldname to be extracted from any event rows passed in and stored
* for use computing the windowed function.
*
* @return the fieldName
*/
public String getFieldName()
{
return fieldName;
}
/**
* @return the numBuckets
*/
public int getNumBuckets()
{
return numBuckets;
}
/**
* @return the cycleSize
*/
public int getCycleSize()
{
return cycleSize;
}
/**
* @return the array of buckets
*/
protected I[] getBuckets()
{
return buckets;
}
/**
* Determines wheter any data is present. If all the buckets are empty (not "0"), then
* no value should be returned from the Averager, as there were not valid rows within the window.
*
* @return true if any non-null values available
*/
protected boolean hasData()
{
for (Object b : buckets) {
if (b != null) {
return true;
}
}
return false;
}
}

View File

@ -0,0 +1,103 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.google.common.base.Preconditions;
import java.util.Collections;
import java.util.List;
/**
* Common base class for AveragerFactories
*
* @param <R> Base type that the averager should return as a result
* @param <F> Type that that is returned from finalization
*/
public abstract class BaseAveragerFactory<R, F> implements AveragerFactory<R, F>
{
protected String name;
protected String fieldName;
protected int numBuckets;
protected int cycleSize;
/**
* Constructor.
*
* @param name Name of the Averager
* @param numBuckets Number of buckets in the analysis window
* @param fieldName Field from incoming events to include in the analysis
* @param cycleSize Cycle group size. Used to calculate day-of-week option. Default=1 (single element in group).
*/
public BaseAveragerFactory(String name, int numBuckets, String fieldName, Integer cycleSize)
{
this.name = name;
this.numBuckets = numBuckets;
this.fieldName = fieldName;
this.cycleSize = (cycleSize != null) ? cycleSize : DEFAULT_PERIOD;
Preconditions.checkNotNull(name, "Must have a valid, non-null averager name");
Preconditions.checkNotNull(fieldName, "Must have a valid, non-null field name");
Preconditions.checkArgument(this.cycleSize > 0, "Cycle size must be greater than zero");
Preconditions.checkArgument(numBuckets > 0, "Bucket size must be greater than zero");
Preconditions.checkArgument(!(this.cycleSize > numBuckets), "Cycle size must be less than the bucket size");
Preconditions.checkArgument(numBuckets % this.cycleSize == 0, "cycleSize must devide numBuckets without a remainder");
}
@Override
@JsonProperty
public String getName()
{
return name;
}
@JsonProperty
public String getFieldName()
{
return fieldName;
}
@Override
@JsonProperty("buckets")
public int getNumBuckets()
{
return numBuckets;
}
@Override
@JsonProperty("cycleSize")
public int getCycleSize()
{
return cycleSize;
}
@Override
public List<String> getDependentFields()
{
return Collections.singletonList(fieldName);
}
@SuppressWarnings("unchecked")
@Override
public F finalizeComputation(R val)
{
return (F) val;
}
}

View File

@ -0,0 +1,51 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import java.util.Comparator;
/**
* Base averager factory that adds a default comparable method.
*
* @param <R> return type
* @param <F> finalized type
*/
public abstract class ComparableAveragerFactory<R extends Comparable<R>, F> extends BaseAveragerFactory<R, F>
{
/**
* Constructor.
*
* @param name Name of the Averager
* @param numBuckets Number of buckets in the analysis window
* @param fieldName Field from incoming events to include in the analysis
* @param cycleSize Cycle group size. Used to calculate day-of-week option. Default=1 (single element in group).
*/
public ComparableAveragerFactory(String name, int numBuckets, String fieldName, Integer cycleSize)
{
super(name, numBuckets, fieldName, cycleSize);
}
@Override
public Comparator<R> getComparator()
{
return Comparator.naturalOrder();
}
}

View File

@ -0,0 +1,81 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.apache.druid.query.aggregation.AggregatorFactory;
import java.util.Map;
/**
* The constant averager.Created soley for incremental development and wiring things up.
*/
public class ConstantAverager implements Averager<Float>
{
private String name;
private float retval;
/**
* @param n
* @param name
* @param retval
*/
public ConstantAverager(int n, String name, float retval)
{
this.name = name;
this.retval = retval;
}
/* (non-Javadoc)
* @see Averager#getResult()
*/
@Override
public Float getResult()
{
return retval;
}
/* (non-Javadoc)
* @see Averager#getName()
*/
@Override
public String getName()
{
return name;
}
/* (non-Javadoc)
* @see Averager#addElement(java.util.Map, java.util.Map)
*/
@Override
public void addElement(Map<String, Object> e, Map<String, AggregatorFactory> a)
{
// since we return a constant, no need to read from the event
}
/* (non-Javadoc)
* @see Averager#skip()
*/
@Override
public void skip()
{
}
}

View File

@ -0,0 +1,101 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
/**
* Implementation of AveragerFacvtory created solely for incremental development
*/
public class ConstantAveragerFactory implements AveragerFactory<Float, Float>
{
private String name;
private int numBuckets;
private float retval;
@JsonCreator
public ConstantAveragerFactory(
@JsonProperty("name") String name,
@JsonProperty("buckets") int numBuckets,
@JsonProperty("retval") float retval
)
{
this.name = name;
this.numBuckets = numBuckets;
this.retval = retval;
}
@Override
@JsonProperty
public String getName()
{
return name;
}
@Override
@JsonProperty("buckets")
public int getNumBuckets()
{
return numBuckets;
}
@JsonProperty
public float getRetval()
{
return retval;
}
@Override
public Averager<Float> createAverager()
{
return new ConstantAverager(numBuckets, name, retval);
}
@Override
public List<String> getDependentFields()
{
return Collections.emptyList();
}
@Override
public Comparator<Float> getComparator()
{
return Comparator.naturalOrder();
}
@Override
public int getCycleSize()
{
return 1;
}
@Override
public Float finalizeComputation(Float val)
{
return val;
}
}

View File

@ -0,0 +1,44 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
public class DoubleMaxAverager extends BaseAverager<Number, Double>
{
public DoubleMaxAverager(int numBuckets, String name, String fieldName, int cycleSize)
{
super(Number.class, numBuckets, name, fieldName, cycleSize);
}
@Override
protected Double computeResult()
{
double result = Double.NEGATIVE_INFINITY;
for (int i = 0; i < numBuckets; i += cycleSize) {
if (buckets[(i + startFrom) % numBuckets] != null) {
result = Double.max(result, (buckets[(i + startFrom) % numBuckets]).doubleValue());
}
}
startFrom++;
return result;
}
}

View File

@ -0,0 +1,44 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
public class DoubleMaxAveragerFactory extends ComparableAveragerFactory<Double, Double>
{
@JsonCreator
public DoubleMaxAveragerFactory(
@JsonProperty("name") String name,
@JsonProperty("buckets") int numBuckets,
@JsonProperty("cycleSize") Integer cycleSize,
@JsonProperty("fieldName") String fieldName
)
{
super(name, numBuckets, fieldName, cycleSize);
}
@Override
public Averager<Double> createAverager()
{
return new DoubleMaxAverager(numBuckets, name, fieldName, cycleSize);
}
}

View File

@ -0,0 +1,48 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
public class DoubleMeanAverager extends BaseAverager<Number, Double>
{
public DoubleMeanAverager(int numBuckets, String name, String fieldName, int cycleSize)
{
super(Number.class, numBuckets, name, fieldName, cycleSize);
}
@Override
protected Double computeResult()
{
double result = 0.0;
int validBuckets = 0;
for (int i = 0; i < numBuckets; i += cycleSize) {
if (buckets[(i + startFrom) % numBuckets] != null) {
result += (buckets[(i + startFrom) % numBuckets]).doubleValue();
} else {
result += 0.0;
}
validBuckets++;
}
startFrom++;
return result / validBuckets;
}
}

View File

@ -0,0 +1,44 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
public class DoubleMeanAveragerFactory extends ComparableAveragerFactory<Double, Double>
{
@JsonCreator
public DoubleMeanAveragerFactory(
@JsonProperty("name") String name,
@JsonProperty("buckets") int numBuckets,
@JsonProperty("cycleSize") Integer cycleSize,
@JsonProperty("fieldName") String fieldName
)
{
super(name, numBuckets, fieldName, cycleSize);
}
@Override
public Averager<Double> createAverager()
{
return new DoubleMeanAverager(numBuckets, name, fieldName, cycleSize);
}
}

View File

@ -0,0 +1,46 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
public class DoubleMeanNoNullAverager extends BaseAverager<Number, Double>
{
public DoubleMeanNoNullAverager(int numBuckets, String name, String fieldName, int cycleSize)
{
super(Number.class, numBuckets, name, fieldName, cycleSize);
}
@Override
protected Double computeResult()
{
double result = 0.0;
int validBuckets = 0;
for (int i = 0; i < numBuckets; i += cycleSize) {
if (buckets[(i + startFrom) % numBuckets] != null) {
result += (buckets[(i + startFrom) % numBuckets]).doubleValue();
validBuckets++;
}
}
startFrom++;
return result / validBuckets;
}
}

View File

@ -0,0 +1,43 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
public class DoubleMeanNoNullAveragerFactory extends ComparableAveragerFactory<Double, Double>
{
@JsonCreator
public DoubleMeanNoNullAveragerFactory(
@JsonProperty("name") String name,
@JsonProperty("buckets") int numBuckets,
@JsonProperty("cycleSize") Integer cycleSize,
@JsonProperty("fieldName") String fieldName
)
{
super(name, numBuckets, fieldName, cycleSize);
}
@Override
public Averager<Double> createAverager()
{
return new DoubleMeanNoNullAverager(numBuckets, name, fieldName, cycleSize);
}
}

View File

@ -0,0 +1,44 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
public class DoubleMinAverager extends BaseAverager<Number, Double>
{
public DoubleMinAverager(int numBuckets, String name, String fieldName, int cycleSize)
{
super(Number.class, numBuckets, name, fieldName, cycleSize);
}
@Override
protected Double computeResult()
{
double result = Double.POSITIVE_INFINITY;
for (int i = 0; i < numBuckets; i += cycleSize) {
if (buckets[(i + startFrom) % numBuckets] != null) {
result = Double.min(result, (buckets[(i + startFrom) % numBuckets]).doubleValue());
}
}
startFrom++;
return result;
}
}

View File

@ -0,0 +1,43 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
public class DoubleMinAveragerFactory extends ComparableAveragerFactory<Double, Double>
{
@JsonCreator
public DoubleMinAveragerFactory(
@JsonProperty("name") String name,
@JsonProperty("buckets") int numBuckets,
@JsonProperty("cycleSize") Integer cycleSize,
@JsonProperty("fieldName") String fieldName
)
{
super(name, numBuckets, fieldName, cycleSize);
}
@Override
public Averager<Double> createAverager()
{
return new DoubleMinAverager(numBuckets, name, fieldName, cycleSize);
}
}

View File

@ -0,0 +1,44 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
public class LongMaxAverager extends BaseAverager<Number, Long>
{
public LongMaxAverager(int numBuckets, String name, String fieldName, int cycleSize)
{
super(Number.class, numBuckets, name, fieldName, cycleSize);
}
@Override
protected Long computeResult()
{
long result = Long.MIN_VALUE;
for (int i = 0; i < numBuckets; i += cycleSize) {
if (buckets[(i + startFrom) % numBuckets] != null) {
result = Long.max(result, (buckets[(i + startFrom) % numBuckets]).longValue());
}
}
startFrom++;
return result;
}
}

View File

@ -0,0 +1,43 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
public class LongMaxAveragerFactory extends ComparableAveragerFactory<Long, Long>
{
@JsonCreator
public LongMaxAveragerFactory(
@JsonProperty("name") String name,
@JsonProperty("buckets") int numBuckets,
@JsonProperty("cycleSize") Integer cycleSize,
@JsonProperty("fieldName") String fieldName
)
{
super(name, numBuckets, fieldName, cycleSize);
}
@Override
public Averager<Long> createAverager()
{
return new LongMaxAverager(numBuckets, name, fieldName, cycleSize);
}
}

View File

@ -0,0 +1,48 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
public class LongMeanAverager extends BaseAverager<Number, Double>
{
public LongMeanAverager(int numBuckets, String name, String fieldName, int cycleSize)
{
super(Number.class, numBuckets, name, fieldName, cycleSize);
}
@Override
protected Double computeResult()
{
long result = 0;
int validBuckets = 0;
for (int i = 0; i < numBuckets; i += cycleSize) {
if (buckets[(i + startFrom) % numBuckets] != null) {
result += (buckets[(i + startFrom) % numBuckets]).longValue();
} else {
result += 0;
}
validBuckets++;
}
startFrom++;
return ((double) result) / validBuckets;
}
}

View File

@ -0,0 +1,44 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
public class LongMeanAveragerFactory extends ComparableAveragerFactory<Double, Double>
{
@JsonCreator
public LongMeanAveragerFactory(
@JsonProperty("name") String name,
@JsonProperty("buckets") int numBuckets,
@JsonProperty("cycleSize") Integer cycleSize,
@JsonProperty("fieldName") String fieldName
)
{
super(name, numBuckets, fieldName, cycleSize);
}
@Override
public Averager<Double> createAverager()
{
return new LongMeanAverager(numBuckets, name, fieldName, cycleSize);
}
}

View File

@ -0,0 +1,46 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
public class LongMeanNoNullAverager extends BaseAverager<Number, Double>
{
public LongMeanNoNullAverager(int numBuckets, String name, String fieldName, int cycleSize)
{
super(Number.class, numBuckets, name, fieldName, cycleSize);
}
@Override
protected Double computeResult()
{
long result = 0;
int validBuckets = 0;
for (int i = 0; i < numBuckets; i += cycleSize) {
if (buckets[(i + startFrom) % numBuckets] != null) {
result += (buckets[(i + startFrom) % numBuckets]).longValue();
validBuckets++;
}
}
startFrom++;
return ((double) result) / validBuckets;
}
}

View File

@ -0,0 +1,44 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
public class LongMeanNoNullAveragerFactory extends ComparableAveragerFactory<Double, Double>
{
@JsonCreator
public LongMeanNoNullAveragerFactory(
@JsonProperty("name") String name,
@JsonProperty("buckets") int numBuckets,
@JsonProperty("cycleSize") Integer cycleSize,
@JsonProperty("fieldName") String fieldName
)
{
super(name, numBuckets, fieldName, cycleSize);
}
@Override
public Averager<Double> createAverager()
{
return new LongMeanNoNullAverager(numBuckets, name, fieldName, cycleSize);
}
}

View File

@ -0,0 +1,45 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
public class LongMinAverager extends BaseAverager<Number, Long>
{
public LongMinAverager(int numBuckets, String name, String fieldName, int cycleSize)
{
super(Number.class, numBuckets, name, fieldName, cycleSize);
}
@Override
protected Long computeResult()
{
long result = Long.MAX_VALUE;
for (int i = 0; i < numBuckets; i += cycleSize) {
if (buckets[(i + startFrom) % numBuckets] != null) {
result = Long.min(result, (buckets[(i + startFrom) % numBuckets]).longValue());
}
}
startFrom++;
return result;
}
}

View File

@ -0,0 +1,44 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
public class LongMinAveragerFactory extends ComparableAveragerFactory<Long, Long>
{
@JsonCreator
public LongMinAveragerFactory(
@JsonProperty("name") String name,
@JsonProperty("buckets") int numBuckets,
@JsonProperty("cycleSize") int cycleSize,
@JsonProperty("fieldName") String fieldName
)
{
super(name, numBuckets, fieldName, cycleSize);
}
@Override
public Averager<Long> createAverager()
{
return new LongMinAverager(numBuckets, name, fieldName, cycleSize);
}
}

View File

@ -0,0 +1,16 @@
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
org.apache.druid.query.movingaverage.MovingAverageQueryModule

View File

@ -0,0 +1,803 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import org.apache.druid.data.input.MapBasedRow;
import org.apache.druid.data.input.Row;
import org.apache.druid.java.util.common.guava.Sequence;
import org.apache.druid.java.util.common.guava.Sequences;
import org.apache.druid.query.aggregation.AggregatorFactory;
import org.apache.druid.query.aggregation.FilteredAggregatorFactory;
import org.apache.druid.query.aggregation.LongSumAggregatorFactory;
import org.apache.druid.query.dimension.DefaultDimensionSpec;
import org.apache.druid.query.dimension.DimensionSpec;
import org.apache.druid.query.filter.DimFilter;
import org.apache.druid.query.filter.SelectorDimFilter;
import org.apache.druid.query.movingaverage.averagers.AveragerFactory;
import org.apache.druid.query.movingaverage.averagers.ConstantAveragerFactory;
import org.apache.druid.query.movingaverage.averagers.LongMeanAveragerFactory;
import org.joda.time.DateTime;
import org.joda.time.chrono.ISOChronology;
import org.junit.Test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import static org.hamcrest.CoreMatchers.equalTo;
import static org.hamcrest.CoreMatchers.not;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertThat;
import static org.junit.Assert.assertTrue;
/**
*
*/
public class MovingAverageIterableTest
{
private static final DateTime JAN_1 = new DateTime(2017, 1, 1, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final DateTime JAN_2 = new DateTime(2017, 1, 2, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final DateTime JAN_3 = new DateTime(2017, 1, 3, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final DateTime JAN_4 = new DateTime(2017, 1, 4, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final DateTime JAN_5 = new DateTime(2017, 1, 5, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final DateTime JAN_6 = new DateTime(2017, 1, 6, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final String GENDER = "gender";
private static final String AGE = "age";
private static final String COUNTRY = "country";
private static final Map<String, Object> dims1 = new HashMap<>();
private static final Map<String, Object> dims2 = new HashMap<>();
private static final Map<String, Object> dims3 = new HashMap<>();
static {
dims1.put(GENDER, "m");
dims1.put(AGE, "10");
dims1.put(COUNTRY, "US");
dims2.put(GENDER, "f");
dims2.put(AGE, "8");
dims2.put(COUNTRY, "US");
dims3.put(GENDER, "u");
dims3.put(AGE, "5");
dims3.put(COUNTRY, "UK");
}
@Test
public void testNext()
{
List<DimensionSpec> dims = Arrays.asList(
new DefaultDimensionSpec(GENDER, GENDER),
new DefaultDimensionSpec(AGE, AGE),
new DefaultDimensionSpec(COUNTRY, COUNTRY)
);
Sequence<RowBucket> dayBuckets = Sequences.simple(Arrays.asList(
new RowBucket(JAN_1, Arrays.asList(
new MapBasedRow(JAN_1, dims1),
new MapBasedRow(JAN_1, dims2)
)),
new RowBucket(JAN_2, Collections.singletonList(
new MapBasedRow(JAN_2, dims1)
)),
new RowBucket(JAN_3, Collections.emptyList()),
new RowBucket(JAN_4, Arrays.asList(
new MapBasedRow(JAN_4, dims2),
new MapBasedRow(JAN_4, dims3)
))
));
Iterable<Row> iterable = new MovingAverageIterable(
dayBuckets,
dims,
Collections.singletonList(new ConstantAveragerFactory("noop", 1, 1.1f)),
Collections.emptyList(),
Collections.emptyList()
);
Iterator<Row> iter = iterable.iterator();
assertTrue(iter.hasNext());
Row r = iter.next();
assertEquals(JAN_1, r.getTimestamp());
assertEquals("m", r.getRaw(GENDER));
assertTrue(iter.hasNext());
r = iter.next();
assertEquals(JAN_1, r.getTimestamp());
assertEquals("f", r.getRaw(GENDER));
assertTrue(iter.hasNext());
r = iter.next();
assertEquals(JAN_2, r.getTimestamp());
assertEquals("m", r.getRaw(GENDER));
assertTrue(iter.hasNext());
r = iter.next();
assertEquals(JAN_2, r.getTimestamp());
assertEquals("f", r.getRaw(GENDER));
assertTrue(iter.hasNext());
r = iter.next();
Row r2 = r;
assertEquals(JAN_3, r.getTimestamp());
assertEquals("US", r.getRaw(COUNTRY));
assertTrue(iter.hasNext());
r = iter.next();
assertEquals(JAN_3, r.getTimestamp());
assertEquals("US", r.getRaw(COUNTRY));
assertThat(r.getRaw(AGE), not(equalTo(r2.getRaw(AGE))));
assertTrue(iter.hasNext());
r = iter.next();
assertEquals(JAN_4, r.getTimestamp());
assertEquals("f", r.getRaw(GENDER));
assertTrue(iter.hasNext());
r = iter.next();
assertEquals(JAN_4, r.getTimestamp());
assertEquals("u", r.getRaw(GENDER));
assertTrue(iter.hasNext());
r = iter.next();
assertEquals(JAN_4, r.getTimestamp());
assertEquals("m", r.getRaw(GENDER));
assertFalse(iter.hasNext());
}
@Test
public void testAveraging()
{
Map<String, Object> event1 = new HashMap<>();
Map<String, Object> event2 = new HashMap<>();
Map<String, Object> event3 = new HashMap<>();
Map<String, Object> event4 = new HashMap<>();
List<DimensionSpec> ds = new ArrayList<>();
ds.add(new DefaultDimensionSpec("gender", "gender"));
event1.put("gender", "m");
event1.put("pageViews", 10L);
Row row1 = new MapBasedRow(JAN_1, event1);
event2.put("gender", "m");
event2.put("pageViews", 20L);
Row row2 = new MapBasedRow(JAN_2, event2);
event3.put("gender", "m");
event3.put("pageViews", 30L);
Row row3 = new MapBasedRow(JAN_3, event3);
event4.put("gender", "f");
event4.put("pageViews", 40L);
Row row4 = new MapBasedRow(JAN_3, event4);
float retval = 14.5f;
Sequence<RowBucket> seq = Sequences.simple(Arrays.asList(
new RowBucket(JAN_1, Collections.singletonList(row1)),
new RowBucket(JAN_2, Collections.singletonList(row2)),
new RowBucket(JAN_3, Arrays.asList(row3, row4))
));
Iterator<Row> iter = new MovingAverageIterable(seq, ds, Arrays.asList(
new ConstantAveragerFactory("costPageViews", 7, retval),
new LongMeanAveragerFactory("movingAvgPageViews", 7, 1, "pageViews")
),
Collections.emptyList(),
Collections.singletonList(new LongSumAggregatorFactory("pageViews",
"pageViews"
))
).iterator();
assertTrue(iter.hasNext());
Row caResult = iter.next();
assertEquals(JAN_1, caResult.getTimestamp());
assertEquals("m", (caResult.getDimension("gender")).get(0));
assertEquals(retval, caResult.getMetric("costPageViews").floatValue(), 0.0f);
assertEquals(1.4285715f, caResult.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
caResult = iter.next();
assertEquals("m", (caResult.getDimension("gender")).get(0));
assertEquals(4.285714f, caResult.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
caResult = iter.next();
assertEquals("m", (caResult.getDimension("gender")).get(0));
assertEquals(8.571428f, caResult.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
caResult = iter.next();
assertEquals("f", (caResult.getDimension("gender")).get(0));
assertEquals(5.714285850f, caResult.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertFalse(iter.hasNext());
}
@Test
public void testCompleteData()
{
Map<String, Object> event1 = new HashMap<>();
Map<String, Object> event2 = new HashMap<>();
Map<String, Object> event3 = new HashMap<>();
event1.put("gender", "m");
event1.put("pageViews", 10L);
event2.put("gender", "f");
event2.put("pageViews", 20L);
event3.put("gender", "u");
event3.put("pageViews", 30L);
List<DimensionSpec> ds = new ArrayList<>();
ds.add(new DefaultDimensionSpec("gender", "gender"));
Row jan1Row1 = new MapBasedRow(JAN_1, event1);
Row jan1Row2 = new MapBasedRow(JAN_1, event2);
Row jan1Row3 = new MapBasedRow(JAN_1, event3);
Row jan2Row1 = new MapBasedRow(JAN_2, event1);
Row jan2Row2 = new MapBasedRow(JAN_2, event2);
Row jan2Row3 = new MapBasedRow(JAN_2, event3);
Sequence<RowBucket> seq = Sequences.simple(Arrays.asList(
new RowBucket(JAN_1, Arrays.asList(jan1Row1, jan1Row2, jan1Row3)),
new RowBucket(JAN_2, Arrays.asList(jan2Row1, jan2Row2, jan2Row3))
));
Iterator<Row> iter = new MovingAverageIterable(seq, ds, Collections.singletonList(
new LongMeanAveragerFactory("movingAvgPageViews", 2, 1, "pageViews")),
Collections.emptyList(),
Collections.singletonList(new LongSumAggregatorFactory("pageViews",
"pageViews"
))
).iterator();
assertTrue(iter.hasNext());
Row result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(JAN_1, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("f", (result.getDimension("gender")).get(0));
assertEquals(JAN_1, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("u", (result.getDimension("gender")).get(0));
assertEquals(JAN_1, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("f", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("u", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
assertFalse(iter.hasNext());
}
// no injection if the data missing at the begining
@Test
public void testMissingDataAtBeginning()
{
Map<String, Object> event1 = new HashMap<>();
Map<String, Object> event2 = new HashMap<>();
Map<String, Object> event3 = new HashMap<>();
event1.put("gender", "m");
event1.put("pageViews", 10L);
event2.put("gender", "f");
event2.put("pageViews", 20L);
event3.put("gender", "u");
event3.put("pageViews", 30L);
List<DimensionSpec> ds = new ArrayList<>();
ds.add(new DefaultDimensionSpec("gender", "gender"));
Row jan1Row1 = new MapBasedRow(JAN_1, event1);
Row jan2Row1 = new MapBasedRow(JAN_2, event1);
Row jan2Row2 = new MapBasedRow(JAN_2, event2);
Row jan2Row3 = new MapBasedRow(JAN_2, event3);
Sequence<RowBucket> seq = Sequences.simple(Arrays.asList(
new RowBucket(JAN_1, Collections.singletonList(jan1Row1)),
new RowBucket(JAN_2, Arrays.asList(jan2Row1, jan2Row2, jan2Row3))
));
Iterator<Row> iter = new MovingAverageIterable(seq, ds, Collections.singletonList(
new LongMeanAveragerFactory("movingAvgPageViews", 2, 1, "pageViews")),
Collections.emptyList(),
Collections.singletonList(new LongSumAggregatorFactory("pageViews",
"pageViews"
))
).iterator();
assertTrue(iter.hasNext());
Row result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(JAN_1, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("f", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("u", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
assertFalse(iter.hasNext());
}
// test injection when the data is missing at the end
@Test
public void testMissingDataAtTheEnd()
{
Map<String, Object> event1 = new HashMap<>();
Map<String, Object> event2 = new HashMap<>();
Map<String, Object> event3 = new HashMap<>();
event1.put("gender", "m");
event1.put("pageViews", 10L);
event2.put("gender", "f");
event2.put("pageViews", 20L);
event3.put("gender", "u");
event3.put("pageViews", 30L);
List<DimensionSpec> ds = new ArrayList<>();
ds.add(new DefaultDimensionSpec("gender", "gender"));
Row jan1Row1 = new MapBasedRow(JAN_1, event1);
Row jan1Row2 = new MapBasedRow(JAN_1, event2);
Row jan1Row3 = new MapBasedRow(JAN_1, event3);
Row jan2Row1 = new MapBasedRow(JAN_2, event1);
Sequence<RowBucket> seq = Sequences.simple(Arrays.asList(
new RowBucket(JAN_1, Arrays.asList(jan1Row1, jan1Row2, jan1Row3)),
new RowBucket(JAN_2, Collections.singletonList(jan2Row1))
));
Iterator<Row> iter = new MovingAverageIterable(seq, ds, Collections.singletonList(
new LongMeanAveragerFactory("movingAvgPageViews", 2, 1, "pageViews")),
Collections.emptyList(),
Collections.singletonList(new LongSumAggregatorFactory("pageViews",
"pageViews"
))
).iterator();
assertTrue(iter.hasNext());
Row result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(JAN_1, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("f", (result.getDimension("gender")).get(0));
assertEquals(JAN_1, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("u", (result.getDimension("gender")).get(0));
assertEquals(JAN_1, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("u", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("f", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
assertFalse(iter.hasNext());
}
// test injection when the data is missing in the middle
@Test
public void testMissingDataAtMiddle()
{
Map<String, Object> eventM = new HashMap<>();
Map<String, Object> eventF = new HashMap<>();
Map<String, Object> eventU = new HashMap<>();
Map<String, Object> event4 = new HashMap<>();
eventM.put("gender", "m");
eventM.put("pageViews", 10L);
eventF.put("gender", "f");
eventF.put("pageViews", 20L);
eventU.put("gender", "u");
eventU.put("pageViews", 30L);
List<DimensionSpec> ds = new ArrayList<>();
ds.add(new DefaultDimensionSpec("gender", "gender"));
Row jan1Row1M = new MapBasedRow(JAN_1, eventM);
Row jan1Row2F = new MapBasedRow(JAN_1, eventF);
Row jan1Row3U = new MapBasedRow(JAN_1, eventU);
Row jan2Row1M = new MapBasedRow(JAN_2, eventM);
Row jan3Row1M = new MapBasedRow(JAN_3, eventM);
Row jan3Row2F = new MapBasedRow(JAN_3, eventF);
Row jan3Row3U = new MapBasedRow(JAN_3, eventU);
Row jan4Row1M = new MapBasedRow(JAN_4, eventM);
Sequence<RowBucket> seq = Sequences.simple(Arrays.asList(
new RowBucket(JAN_1, Arrays.asList(jan1Row1M, jan1Row2F, jan1Row3U)),
new RowBucket(JAN_2, Collections.singletonList(jan2Row1M)),
new RowBucket(JAN_3, Arrays.asList(jan3Row1M, jan3Row2F, jan3Row3U)),
new RowBucket(JAN_4, Collections.singletonList(jan4Row1M))
));
Iterator<Row> iter = new MovingAverageIterable(seq, ds, Collections.singletonList(
new LongMeanAveragerFactory("movingAvgPageViews", 3, 1, "pageViews")),
Collections.emptyList(),
Collections.singletonList(new LongSumAggregatorFactory("pageViews",
"pageViews"
))
).iterator();
// Jan 1
assertTrue(iter.hasNext());
Row result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(JAN_1, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("f", (result.getDimension("gender")).get(0));
assertEquals(JAN_1, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("u", (result.getDimension("gender")).get(0));
assertEquals(JAN_1, (result.getTimestamp()));
// Jan 2
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("u", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("f", (result.getDimension("gender")).get(0));
assertEquals(JAN_2, (result.getTimestamp()));
// Jan 3
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(JAN_3, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("f", (result.getDimension("gender")).get(0));
assertEquals(JAN_3, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("u", (result.getDimension("gender")).get(0));
assertEquals(JAN_3, (result.getTimestamp()));
// Jan 4
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(JAN_4, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("u", (result.getDimension("gender")).get(0));
assertEquals(JAN_4, (result.getTimestamp()));
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("f", (result.getDimension("gender")).get(0));
assertEquals(JAN_4, (result.getTimestamp()));
assertFalse(iter.hasNext());
}
@Test
public void testMissingDaysAtBegining()
{
Map<String, Object> event1 = new HashMap<>();
Map<String, Object> event2 = new HashMap<>();
List<DimensionSpec> ds = new ArrayList<>();
ds.add(new DefaultDimensionSpec("gender", "gender"));
event1.put("gender", "m");
event1.put("pageViews", 10L);
Row row1 = new MapBasedRow(JAN_3, event1);
event2.put("gender", "m");
event2.put("pageViews", 20L);
Row row2 = new MapBasedRow(JAN_4, event2);
Sequence<RowBucket> seq = Sequences.simple(Arrays.asList(
new RowBucket(JAN_1, Collections.emptyList()),
new RowBucket(JAN_2, Collections.emptyList()),
new RowBucket(JAN_3, Collections.singletonList(row1)),
new RowBucket(JAN_4, Collections.singletonList(row2))
));
Iterator<Row> iter = new MovingAverageIterable(seq, ds, Collections.singletonList(
new LongMeanAveragerFactory("movingAvgPageViews", 4, 1, "pageViews")),
Collections.emptyList(),
Collections.singletonList(new LongSumAggregatorFactory("pageViews",
"pageViews"
))
).iterator();
assertTrue(iter.hasNext());
Row result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(2.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(7.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertFalse(iter.hasNext());
}
@Test
public void testMissingDaysInMiddle()
{
System.setProperty("druid.generic.useDefaultValueForNull", "true");
Map<String, Object> event1 = new HashMap<>();
Map<String, Object> event2 = new HashMap<>();
List<DimensionSpec> ds = new ArrayList<>();
ds.add(new DefaultDimensionSpec("gender", "gender"));
event1.put("gender", "m");
event1.put("pageViews", 10L);
Row row1 = new MapBasedRow(JAN_1, event1);
event2.put("gender", "m");
event2.put("pageViews", 20L);
Row row2 = new MapBasedRow(JAN_4, event2);
Sequence<RowBucket> seq = Sequences.simple(Arrays.asList(
new RowBucket(JAN_1, Collections.singletonList(row1)),
new RowBucket(JAN_2, Collections.emptyList()),
new RowBucket(JAN_3, Collections.emptyList()),
new RowBucket(JAN_4, Collections.singletonList(row2))
));
Iterator<Row> iter = new MovingAverageIterable(seq, ds, Collections.singletonList(
new LongMeanAveragerFactory("movingAvgPageViews", 4, 1, "pageViews")),
Collections.emptyList(),
Collections.singletonList(new LongSumAggregatorFactory("pageViews",
"pageViews"
))
).iterator();
assertTrue(iter.hasNext());
Row result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(2.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(2.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(2.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(7.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertFalse(iter.hasNext());
}
@Test
public void testWithFilteredAggregation()
{
Map<String, Object> event1 = new HashMap<>();
Map<String, Object> event2 = new HashMap<>();
List<DimensionSpec> ds = new ArrayList<>();
ds.add(new DefaultDimensionSpec("gender", "gender"));
event1.put("gender", "m");
event1.put("pageViews", 10L);
Row row1 = new MapBasedRow(JAN_1, event1);
event2.put("gender", "m");
event2.put("pageViews", 20L);
Row row2 = new MapBasedRow(JAN_4, event2);
Sequence<RowBucket> seq = Sequences.simple(Arrays.asList(
new RowBucket(JAN_1, Collections.singletonList(row1)),
new RowBucket(JAN_2, Collections.emptyList()),
new RowBucket(JAN_3, Collections.emptyList()),
new RowBucket(JAN_4, Collections.singletonList(row2))
));
AveragerFactory averagerfactory = new LongMeanAveragerFactory("movingAvgPageViews", 4, 1, "pageViews");
AggregatorFactory aggregatorFactory = new LongSumAggregatorFactory("pageViews", "pageViews");
DimFilter filter = new SelectorDimFilter("gender", "m", null);
FilteredAggregatorFactory filteredAggregatorFactory = new FilteredAggregatorFactory(aggregatorFactory, filter);
Iterator<Row> iter = new MovingAverageIterable(seq, ds, Collections.singletonList(
averagerfactory),
Collections.emptyList(),
Collections.singletonList(
filteredAggregatorFactory)
).iterator();
assertTrue(iter.hasNext());
Row result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(2.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(2.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(2.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(7.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertFalse(iter.hasNext());
}
@Test
public void testMissingDaysAtEnd()
{
System.setProperty("druid.generic.useDefaultValueForNull", "true");
Map<String, Object> event1 = new HashMap<>();
Map<String, Object> event2 = new HashMap<>();
List<DimensionSpec> ds = new ArrayList<>();
ds.add(new DefaultDimensionSpec("gender", "gender"));
event1.put("gender", "m");
event1.put("pageViews", 10L);
Row row1 = new MapBasedRow(JAN_1, event1);
event2.put("gender", "m");
event2.put("pageViews", 20L);
Row row2 = new MapBasedRow(JAN_2, event2);
Sequence<RowBucket> seq = Sequences.simple(Arrays.asList(
new RowBucket(JAN_1, Collections.singletonList(row1)),
new RowBucket(JAN_2, Collections.singletonList(row2)),
new RowBucket(JAN_3, Collections.emptyList()),
new RowBucket(JAN_4, Collections.emptyList()),
new RowBucket(JAN_5, Collections.emptyList()),
new RowBucket(JAN_6, Collections.emptyList())
));
Iterator<Row> iter = new MovingAverageIterable(seq, ds, Collections.singletonList(
new LongMeanAveragerFactory("movingAvgPageViews", 4, 1, "pageViews")),
Collections.emptyList(),
Collections.singletonList(new LongSumAggregatorFactory("pageViews",
"pageViews"
))
).iterator();
assertTrue(iter.hasNext());
Row result = iter.next();
assertEquals(JAN_1, result.getTimestamp());
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(2.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals(JAN_2, result.getTimestamp());
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(7.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals(JAN_3, result.getTimestamp());
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(7.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals(JAN_4, result.getTimestamp());
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(7.5f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals(JAN_5, result.getTimestamp());
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(5.0f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertTrue(iter.hasNext());
result = iter.next();
assertEquals(JAN_6, result.getTimestamp());
assertEquals("m", (result.getDimension("gender")).get(0));
assertEquals(0.0f, result.getMetric("movingAvgPageViews").floatValue(), 0.0f);
assertFalse(iter.hasNext());
}
}

View File

@ -0,0 +1,420 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import com.fasterxml.jackson.core.JsonParseException;
import com.fasterxml.jackson.core.type.TypeReference;
import com.fasterxml.jackson.databind.JsonMappingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.node.ArrayNode;
import com.fasterxml.jackson.dataformat.yaml.YAMLFactory;
import com.google.common.collect.Maps;
import com.google.inject.Injector;
import com.google.inject.Module;
import com.google.inject.name.Names;
import com.google.inject.util.Providers;
import mockit.Mock;
import mockit.MockUp;
import org.apache.druid.client.CachingClusteredClient;
import org.apache.druid.client.DruidServer;
import org.apache.druid.client.ImmutableDruidServer;
import org.apache.druid.client.TimelineServerView;
import org.apache.druid.client.cache.CacheConfig;
import org.apache.druid.client.cache.CachePopulatorStats;
import org.apache.druid.client.cache.ForegroundCachePopulator;
import org.apache.druid.client.cache.MapCache;
import org.apache.druid.client.selector.ServerSelector;
import org.apache.druid.data.input.MapBasedRow;
import org.apache.druid.data.input.Row;
import org.apache.druid.guice.DruidProcessingModule;
import org.apache.druid.guice.GuiceInjectors;
import org.apache.druid.guice.QueryRunnerFactoryModule;
import org.apache.druid.guice.QueryableModule;
import org.apache.druid.guice.http.DruidHttpClientConfig;
import org.apache.druid.initialization.Initialization;
import org.apache.druid.java.util.common.guava.Accumulators;
import org.apache.druid.java.util.common.guava.Sequence;
import org.apache.druid.java.util.common.guava.Sequences;
import org.apache.druid.java.util.emitter.core.Event;
import org.apache.druid.java.util.emitter.service.ServiceEmitter;
import org.apache.druid.query.DataSource;
import org.apache.druid.query.Query;
import org.apache.druid.query.QueryPlus;
import org.apache.druid.query.QueryRunner;
import org.apache.druid.query.QuerySegmentWalker;
import org.apache.druid.query.QueryToolChestWarehouse;
import org.apache.druid.query.Result;
import org.apache.druid.query.RetryQueryRunnerConfig;
import org.apache.druid.query.groupby.GroupByQuery;
import org.apache.druid.query.movingaverage.test.TestConfig;
import org.apache.druid.query.timeseries.TimeseriesQuery;
import org.apache.druid.query.timeseries.TimeseriesResultValue;
import org.apache.druid.server.ClientQuerySegmentWalker;
import org.apache.druid.server.initialization.ServerConfig;
import org.apache.druid.timeline.TimelineLookup;
import org.hamcrest.core.IsInstanceOf;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.junit.runners.Parameterized.Parameters;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.Executor;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertThat;
/**
* Base class for implementing MovingAverageQuery tests
*/
@RunWith(Parameterized.class)
public class MovingAverageQueryTest
{
private final ObjectMapper jsonMapper;
private final Injector injector;
private final QueryToolChestWarehouse warehouse;
private final RetryQueryRunnerConfig retryConfig;
private final ServerConfig serverConfig;
private final List<Row> groupByResults = new ArrayList<>();
private final List<Result<TimeseriesResultValue>> timeseriesResults = new ArrayList<>();
private final TestConfig config;
private final String yamlFile;
@Parameters(name = "{0}")
public static Iterable<String[]> data() throws IOException
{
BufferedReader testReader = new BufferedReader(
new InputStreamReader(MovingAverageQueryTest.class.getResourceAsStream("/queryTests"), StandardCharsets.UTF_8));
List<String[]> tests = new ArrayList<>();
for (String line = testReader.readLine(); line != null; line = testReader.readLine()) {
tests.add(new String[] {line});
}
return tests;
}
public MovingAverageQueryTest(String yamlFile) throws IOException
{
this.yamlFile = yamlFile;
List<Module> modules = getRequiredModules();
modules.add(
binder -> {
binder.bindConstant().annotatedWith(Names.named("serviceName")).to("queryTest");
binder.bindConstant().annotatedWith(Names.named("servicePort")).to(0);
binder.bindConstant().annotatedWith(Names.named("tlsServicePort")).to(1);
binder.bind(QuerySegmentWalker.class).toProvider(Providers.of(null));
}
);
System.setProperty("druid.generic.useDefaultValueForNull", "true");
System.setProperty("druid.processing.buffer.sizeBytes", "655360");
Injector baseInjector = GuiceInjectors.makeStartupInjector();
injector = Initialization.makeInjectorWithModules(baseInjector, modules);
jsonMapper = injector.getInstance(ObjectMapper.class);
warehouse = injector.getInstance(QueryToolChestWarehouse.class);
retryConfig = injector.getInstance(RetryQueryRunnerConfig.class);
serverConfig = injector.getInstance(ServerConfig.class);
InputStream is = getClass().getResourceAsStream("/queryTests/" + yamlFile);
ObjectMapper reader = new ObjectMapper(new YAMLFactory());
config = reader.readValue(is, TestConfig.class);
}
/**
* Returns the JSON query that should be used in the test.
*
* @return The JSON query
*/
protected String getQueryString()
{
return config.query.toString();
}
/**
* Returns the JSON result that should be expected from the query.
*
* @return The JSON result
*/
protected String getExpectedResultString()
{
return config.expectedOutput.toString();
}
/**
* Returns the JSON result that the nested groupby query should produce.
* Either this method or {@link #getTimeseriesResultJson()} must be defined
* by the subclass.
*
* @return The JSON result from the groupby query
*/
protected String getGroupByResultJson()
{
ArrayNode node = config.intermediateResults.get("groupBy");
return node == null ? null : node.toString();
}
/**
* Returns the JSON result that the nested timeseries query should produce.
* Either this method or {@link #getGroupByResultJson()} must be defined
* by the subclass.
*
* @return The JSON result from the timeseries query
*/
protected String getTimeseriesResultJson()
{
ArrayNode node = config.intermediateResults.get("timeseries");
return node == null ? null : node.toString();
}
/**
* Returns the expected query type.
*
* @return The Query type
*/
protected Class<?> getExpectedQueryType()
{
return MovingAverageQuery.class;
}
protected TypeReference<?> getExpectedResultType()
{
return new TypeReference<List<Row>>()
{
};
}
/**
* Returns a list of any additional Druid Modules necessary to run the test.
*
* @return List of Druid Modules
*/
protected List<Module> getRequiredModules()
{
List<Module> list = new ArrayList<>();
list.add(new QueryRunnerFactoryModule());
list.add(new QueryableModule());
list.add(new DruidProcessingModule());
return list;
}
/**
* Set up any needed mocks to stub out backend query behavior.
*
* @throws IOException
* @throws JsonMappingException
* @throws JsonParseException
*/
protected void defineMocks() throws IOException
{
groupByResults.clear();
timeseriesResults.clear();
if (getGroupByResultJson() != null) {
groupByResults.addAll(jsonMapper.readValue(getGroupByResultJson(), new TypeReference<List<Row>>()
{
}));
}
if (getTimeseriesResultJson() != null) {
timeseriesResults.addAll(jsonMapper.readValue(
getTimeseriesResultJson(),
new TypeReference<List<Result<TimeseriesResultValue>>>()
{
}
));
}
}
/**
* converts Int to Long, Float to Double in the actual and expected result
*
* @param result
*/
protected List<MapBasedRow> consistentTypeCasting(List<MapBasedRow> result)
{
List<MapBasedRow> newResult = new ArrayList<>();
for (MapBasedRow row : result) {
final Map<String, Object> event = Maps.newLinkedHashMap((row).getEvent());
event.forEach((key, value) -> {
if (Integer.class.isInstance(value)) {
event.put(key, ((Integer) value).longValue());
}
if (Float.class.isInstance(value)) {
event.put(key, ((Float) value).doubleValue());
}
});
newResult.add(new MapBasedRow(row.getTimestamp(), event));
}
return newResult;
}
/**
* Validate that the specified query behaves correctly.
*
* @throws IOException
* @throws JsonMappingException
* @throws JsonParseException
*/
@SuppressWarnings({"unchecked", "rawtypes"})
@Test
public void testQuery() throws IOException
{
// create mocks for nested queries
@SuppressWarnings("unused")
MockUp<GroupByQuery> groupByQuery = new MockUp<GroupByQuery>()
{
@Mock
public QueryRunner getRunner(QuerySegmentWalker walker)
{
return new QueryRunner()
{
@Override
public Sequence run(QueryPlus queryPlus, Map responseContext)
{
return Sequences.simple(groupByResults);
}
};
}
};
@SuppressWarnings("unused")
MockUp<TimeseriesQuery> timeseriesQuery = new MockUp<TimeseriesQuery>()
{
@Mock
public QueryRunner getRunner(QuerySegmentWalker walker)
{
return new QueryRunner()
{
@Override
public Sequence run(QueryPlus queryPlus, Map responseContext)
{
return Sequences.simple(timeseriesResults);
}
};
}
};
Query<?> query = jsonMapper.readValue(getQueryString(), Query.class);
assertThat(query, IsInstanceOf.instanceOf(getExpectedQueryType()));
List<MapBasedRow> expectedResults = jsonMapper.readValue(getExpectedResultString(), getExpectedResultType());
assertNotNull(expectedResults);
assertThat(expectedResults, IsInstanceOf.instanceOf(List.class));
CachingClusteredClient baseClient = new CachingClusteredClient(
warehouse,
new TimelineServerView()
{
@Override
public TimelineLookup<String, ServerSelector> getTimeline(DataSource dataSource)
{
return null;
}
@Override
public List<ImmutableDruidServer> getDruidServers()
{
return null;
}
@Override
public <T> QueryRunner<T> getQueryRunner(DruidServer server)
{
return null;
}
@Override
public void registerTimelineCallback(Executor exec, TimelineCallback callback)
{
}
@Override
public void registerSegmentCallback(Executor exec, SegmentCallback callback)
{
}
@Override
public void registerServerRemovedCallback(Executor exec, ServerRemovedCallback callback)
{
}
},
MapCache.create(100000),
jsonMapper,
new ForegroundCachePopulator(jsonMapper, new CachePopulatorStats(), -1),
new CacheConfig(),
new DruidHttpClientConfig()
{
@Override
public long getMaxQueuedBytes()
{
return 0L;
}
}
);
ClientQuerySegmentWalker walker = new ClientQuerySegmentWalker(
new ServiceEmitter("", "", null)
{
@Override
public void emit(Event event) {}
},
baseClient, warehouse, retryConfig, jsonMapper, serverConfig, null, new CacheConfig()
);
final Map<String, Object> responseContext = new HashMap<>();
defineMocks();
QueryPlus queryPlus = QueryPlus.wrap(query);
final Sequence<?> res = query.getRunner(walker).run(queryPlus, responseContext);
List actualResults = new ArrayList();
actualResults = (List<MapBasedRow>) res.accumulate(actualResults, Accumulators.list());
expectedResults = consistentTypeCasting(expectedResults);
actualResults = consistentTypeCasting(actualResults);
assertEquals(expectedResults, actualResults);
}
}

View File

@ -0,0 +1,109 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import org.apache.druid.data.input.MapBasedRow;
import org.apache.druid.data.input.Row;
import org.apache.druid.java.util.common.granularity.Granularities;
import org.apache.druid.query.TableDataSource;
import org.apache.druid.query.aggregation.CountAggregatorFactory;
import org.apache.druid.query.aggregation.post.ArithmeticPostAggregator;
import org.apache.druid.query.aggregation.post.FieldAccessPostAggregator;
import org.apache.druid.query.movingaverage.averagers.DoubleMeanAveragerFactory;
import org.apache.druid.query.spec.MultipleIntervalSegmentSpec;
import org.joda.time.DateTime;
import org.joda.time.Interval;
import org.joda.time.chrono.ISOChronology;
import org.junit.Before;
import org.junit.Test;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNull;
/**
* Unit tests for PostAveragerCalcualtor
*/
public class PostAveragerAggregatorCalculatorTest
{
private MovingAverageQuery query;
private PostAveragerAggregatorCalculator pac;
private Map<String, Object> event;
private MapBasedRow row;
@Before
public void setup()
{
System.setProperty("druid.generic.useDefaultValueForNull", "true");
query = new MovingAverageQuery(
new TableDataSource("d"),
new MultipleIntervalSegmentSpec(Collections.singletonList(new Interval("2017-01-01/2017-01-01", ISOChronology.getInstanceUTC()))),
null,
Granularities.DAY,
null,
Collections.singletonList(new CountAggregatorFactory("count")),
Collections.emptyList(),
null,
Collections.singletonList(new DoubleMeanAveragerFactory("avgCount", 7, 1, "count")),
Collections.singletonList(new ArithmeticPostAggregator(
"avgCountRatio",
"/",
Arrays.asList(
new FieldAccessPostAggregator("count", "count"),
new FieldAccessPostAggregator("avgCount", "avgCount")
)
)),
null,
null
);
pac = new PostAveragerAggregatorCalculator(query);
event = new HashMap<>();
row = new MapBasedRow(new DateTime(ISOChronology.getInstanceUTC()), event);
}
@Test
public void testApply()
{
event.put("count", new Double(10.0));
event.put("avgCount", new Double(12.0));
Row result = pac.apply(row);
assertEquals(result.getMetric("avgCountRatio").floatValue(), 10.0f / 12.0f, 0.0);
}
@Test
public void testApplyMissingColumn()
{
event.put("count", new Double(10.0));
Row result = pac.apply(row);
assertEquals(result.getMetric("avgCountRatio").floatValue(), 0.0, 0.0);
assertNull(result.getRaw("avgCountRatio"));
}
}

View File

@ -0,0 +1,670 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage;
import org.apache.druid.data.input.MapBasedRow;
import org.apache.druid.data.input.Row;
import org.apache.druid.java.util.common.guava.Sequence;
import org.apache.druid.java.util.common.guava.Sequences;
import org.joda.time.DateTime;
import org.joda.time.Interval;
import org.joda.time.Period;
import org.joda.time.chrono.ISOChronology;
import org.junit.BeforeClass;
import org.junit.Test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
public class RowBucketIterableTest
{
private static final DateTime JAN_1 = new DateTime(2017, 1, 1, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final DateTime JAN_2 = new DateTime(2017, 1, 2, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final DateTime JAN_3 = new DateTime(2017, 1, 3, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final DateTime JAN_4 = new DateTime(2017, 1, 4, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final DateTime JAN_5 = new DateTime(2017, 1, 5, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final DateTime JAN_6 = new DateTime(2017, 1, 6, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final DateTime JAN_9 = new DateTime(2017, 1, 9, 0, 0, 0, 0, ISOChronology.getInstanceUTC());
private static final Map<String, Object> EVENT_M_10 = new HashMap<>();
private static final Map<String, Object> EVENT_F_20 = new HashMap<>();
private static final Map<String, Object> EVENT_U_30 = new HashMap<>();
private static final Row JAN_1_M_10 = new MapBasedRow(new DateTime(2017, 1, 1, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_M_10);
private static final Row JAN_1_F_20 = new MapBasedRow(new DateTime(2017, 1, 1, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_F_20);
private static final Row JAN_1_U_30 = new MapBasedRow(new DateTime(2017, 1, 1, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_U_30);
private static final Row JAN_2_M_10 = new MapBasedRow(new DateTime(2017, 1, 2, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_M_10);
private static final Row JAN_3_M_10 = new MapBasedRow(new DateTime(2017, 1, 3, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_M_10);
private static final Row JAN_3_F_20 = new MapBasedRow(new DateTime(2017, 1, 3, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_F_20);
private static final Row JAN_4_M_10 = new MapBasedRow(new DateTime(2017, 1, 4, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_M_10);
private static final Row JAN_4_F_20 = new MapBasedRow(new DateTime(2017, 1, 4, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_F_20);
private static final Row JAN_4_U_30 = new MapBasedRow(new DateTime(2017, 1, 4, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_U_30);
private static final Row JAN_5_M_10 = new MapBasedRow(new DateTime(2017, 1, 5, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_M_10);
private static final Row JAN_6_M_10 = new MapBasedRow(new DateTime(2017, 1, 6, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_M_10);
private static final Row JAN_7_F_20 = new MapBasedRow(new DateTime(2017, 1, 7, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_F_20);
private static final Row JAN_8_U_30 = new MapBasedRow(new DateTime(2017, 1, 8, 0, 0, 0, 0, ISOChronology.getInstanceUTC()), EVENT_U_30);
private static final Interval INTERVAL_JAN_1_1 = new Interval(JAN_1, JAN_2);
private static final Interval INTERVAL_JAN_1_2 = new Interval(JAN_1, JAN_3);
private static final Interval INTERVAL_JAN_1_4 = new Interval(JAN_1, JAN_5);
private static final Interval INTERVAL_JAN_1_5 = new Interval(JAN_1, JAN_6);
private static final Interval INTERVAL_JAN_6_8 = new Interval(JAN_6, JAN_9);
private static final Period ONE_DAY = Period.days(1);
private List<Row> rows = null;
private List<Interval> intervals = new ArrayList<>();
@BeforeClass
public static void setupClass()
{
EVENT_M_10.put("gender", "m");
EVENT_M_10.put("pageViews", 10L);
EVENT_F_20.put("gender", "f");
EVENT_F_20.put("pageViews", 20L);
EVENT_U_30.put("gender", "u");
EVENT_U_30.put("pageViews", 30L);
}
// normal case. data for all the days present
@Test
public void testCompleteData()
{
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
rows = new ArrayList<>();
rows.add(JAN_1_M_10);
rows.add(JAN_2_M_10);
rows.add(JAN_3_M_10);
rows.add(JAN_4_M_10);
List<Row> expectedDay1 = Collections.singletonList(JAN_1_M_10);
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
List<Row> expectedDay3 = Collections.singletonList(JAN_3_M_10);
List<Row> expectedDay4 = Collections.singletonList(JAN_4_M_10);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(JAN_1, actual.getDateTime());
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(JAN_2, actual.getDateTime());
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(JAN_3, actual.getDateTime());
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(JAN_4, actual.getDateTime());
assertEquals(expectedDay4, actual.getRows());
}
// all days present and last day only has one row
@Test
public void testApplyLastDaySingleRow()
{
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
List<Row> expectedDay1 = Arrays.asList(JAN_1_M_10, JAN_1_F_20);
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
List<Row> expectedDay3 = Collections.singletonList(JAN_3_F_20);
List<Row> expectedDay4 = Collections.singletonList(JAN_4_M_10);
rows = new ArrayList<>();
rows.add(JAN_1_M_10);
rows.add(JAN_1_F_20);
rows.add(JAN_2_M_10);
rows.add(JAN_3_F_20);
rows.add(JAN_4_M_10);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(expectedDay4, actual.getRows());
}
// all days present and last day has multiple rows
@Test
public void testApplyLastDayMultipleRows()
{
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
List<Row> expectedDay1 = Arrays.asList(JAN_1_M_10, JAN_1_F_20);
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
List<Row> expectedDay3 = Collections.singletonList(JAN_3_F_20);
List<Row> expectedDay4 = Arrays.asList(JAN_4_M_10, JAN_4_F_20, JAN_4_U_30);
rows = new ArrayList<>();
rows.add(JAN_1_M_10);
rows.add(JAN_1_F_20);
rows.add(JAN_2_M_10);
rows.add(JAN_3_F_20);
rows.add(JAN_4_M_10);
rows.add(JAN_4_F_20);
rows.add(JAN_4_U_30);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(expectedDay4, actual.getRows());
}
// test single day with single row
@Test
public void testSingleDaySingleRow()
{
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_1);
rows = new ArrayList<>();
rows.add(JAN_1_M_10);
List<Row> expectedDay1 = Collections.singletonList(JAN_1_M_10);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(expectedDay1, actual.getRows());
assertEquals(JAN_1, actual.getDateTime());
}
// test single day with multiple rows
@Test
public void testSingleDayMultipleRow()
{
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_1);
rows = new ArrayList<>();
rows.add(JAN_1_M_10);
rows.add(JAN_1_F_20);
rows.add(JAN_1_U_30);
List<Row> expectedDay1 = Arrays.asList(JAN_1_M_10, JAN_1_F_20, JAN_1_U_30);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(JAN_1, actual.getDateTime());
assertEquals(expectedDay1, actual.getRows());
}
// missing day at the beginning followed by single row
@Test
public void testMissingDaysAtBegining()
{
List<Row> expectedDay1 = Collections.emptyList();
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_2);
rows = new ArrayList<>();
rows.add(JAN_2_M_10);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(JAN_1, actual.getDateTime());
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(JAN_2, actual.getDateTime());
assertEquals(expectedDay2, actual.getRows());
}
// missing day at the beginning followed by multiple row
@Test
public void testMissingDaysAtBeginingFollowedByMultipleRow()
{
List<Row> expectedDay1 = Collections.emptyList();
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
List<Row> expectedDay3 = Collections.singletonList(JAN_3_M_10);
List<Row> expectedDay4 = Collections.singletonList(JAN_4_M_10);
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
rows = new ArrayList<>();
rows.add(JAN_2_M_10);
rows.add(JAN_3_M_10);
rows.add(JAN_4_M_10);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(JAN_1, actual.getDateTime());
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(JAN_2, actual.getDateTime());
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(JAN_3, actual.getDateTime());
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(JAN_4, actual.getDateTime());
assertEquals(expectedDay4, actual.getRows());
}
// missing day at the beginning and at the end
@Test
public void testMissingDaysAtBeginingAndAtTheEnd()
{
List<Row> expectedDay1 = Collections.emptyList();
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
List<Row> expectedDay3 = Collections.singletonList(JAN_3_M_10);
List<Row> expectedDay4 = Collections.emptyList();
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
rows = new ArrayList<>();
rows.add(JAN_2_M_10);
rows.add(JAN_3_M_10);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(JAN_1, actual.getDateTime());
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(JAN_2, actual.getDateTime());
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(JAN_3, actual.getDateTime());
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(JAN_4, actual.getDateTime());
assertEquals(expectedDay4, actual.getRows());
}
// multiple missing days in an interval
@Test
public void testMultipleMissingDays()
{
List<Row> expectedDay1 = Collections.emptyList();
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
List<Row> expectedDay3 = Collections.emptyList();
List<Row> expectedDay4 = Collections.singletonList(JAN_4_M_10);
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
rows = new ArrayList<>();
rows.add(JAN_2_M_10);
rows.add(JAN_4_M_10);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(JAN_1, actual.getDateTime());
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(JAN_2, actual.getDateTime());
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(JAN_3, actual.getDateTime());
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(JAN_4, actual.getDateTime());
assertEquals(expectedDay4, actual.getRows());
}
// multiple missing days in an interval followed by multiple row at the end
@Test
public void testMultipleMissingDaysMultipleRowAtTheEnd()
{
List<Row> expectedDay1 = Collections.emptyList();
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
List<Row> expectedDay3 = Collections.emptyList();
List<Row> expectedDay4 = Collections.singletonList(JAN_4_M_10);
List<Row> expectedDay5 = Collections.singletonList(JAN_5_M_10);
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_5);
rows = new ArrayList<>();
rows.add(JAN_2_M_10);
rows.add(JAN_4_M_10);
rows.add(JAN_5_M_10);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(JAN_1, actual.getDateTime());
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(JAN_2, actual.getDateTime());
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(JAN_3, actual.getDateTime());
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(JAN_4, actual.getDateTime());
assertEquals(expectedDay4, actual.getRows());
actual = iter.next();
assertEquals(JAN_5, actual.getDateTime());
assertEquals(expectedDay5, actual.getRows());
}
// missing day in the middle followed by single row
@Test
public void testMissingDaysInMiddleOneRow()
{
List<Row> expectedDay1 = Collections.singletonList(JAN_1_M_10);
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
List<Row> expectedDay3 = Collections.emptyList();
List<Row> expectedDay4 = Collections.singletonList(JAN_4_M_10);
rows = new ArrayList<>();
rows.add(JAN_1_M_10);
rows.add(JAN_2_M_10);
rows.add(JAN_4_M_10);
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(JAN_3, actual.getDateTime());
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(expectedDay4, actual.getRows());
}
// missing day in the middle followed by multiple rows
@Test
public void testMissingDaysInMiddleMultipleRow()
{
List<Row> expectedDay1 = Collections.singletonList(JAN_1_M_10);
List<Row> expectedDay2 = Collections.emptyList();
List<Row> expectedDay3 = Collections.singletonList(JAN_3_M_10);
List<Row> expectedDay4 = Collections.singletonList(JAN_4_M_10);
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
rows = new ArrayList<>();
rows.add(JAN_1_M_10);
rows.add(JAN_3_M_10);
rows.add(JAN_4_M_10);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(JAN_1, actual.getDateTime());
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(JAN_2, actual.getDateTime());
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(JAN_3, actual.getDateTime());
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(JAN_4, actual.getDateTime());
assertEquals(expectedDay4, actual.getRows());
}
// data missing for last day .
@Test
public void testApplyLastDayNoRows()
{
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
List<Row> expectedDay1 = Arrays.asList(JAN_1_M_10, JAN_1_F_20);
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
List<Row> expectedDay3 = Collections.singletonList(JAN_3_F_20);
List<Row> expectedDay4 = Collections.emptyList();
rows = new ArrayList<>();
rows.add(JAN_1_M_10);
rows.add(JAN_1_F_20);
rows.add(JAN_2_M_10);
rows.add(JAN_3_F_20);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(JAN_4, actual.getDateTime());
assertEquals(expectedDay4, actual.getRows());
}
// data missing for last two days
@Test
public void testApplyLastTwoDayNoRows()
{
List<Row> expectedDay1 = Arrays.asList(JAN_1_M_10, JAN_1_F_20);
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
List<Row> expectedDay3 = Collections.emptyList();
List<Row> expectedDay4 = Collections.emptyList();
rows = new ArrayList<>();
rows.add(JAN_1_M_10);
rows.add(JAN_1_F_20);
rows.add(JAN_2_M_10);
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(JAN_3, actual.getDateTime());
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(JAN_4, actual.getDateTime());
assertEquals(expectedDay4, actual.getRows());
}
@Test
public void testApplyMultipleInterval()
{
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
intervals.add(INTERVAL_JAN_6_8);
List<Row> expectedDay1 = Arrays.asList(JAN_1_M_10, JAN_1_F_20);
List<Row> expectedDay2 = Collections.singletonList(JAN_2_M_10);
List<Row> expectedDay3 = Collections.singletonList(JAN_3_F_20);
List<Row> expectedDay4 = Arrays.asList(JAN_4_M_10, JAN_4_F_20, JAN_4_U_30);
List<Row> expectedDay6 = Collections.singletonList(JAN_6_M_10);
List<Row> expectedDay7 = Collections.singletonList(JAN_7_F_20);
List<Row> expectedDay8 = Collections.singletonList(JAN_8_U_30);
rows = new ArrayList<>();
rows.add(JAN_1_M_10);
rows.add(JAN_1_F_20);
rows.add(JAN_2_M_10);
rows.add(JAN_3_F_20);
rows.add(JAN_4_M_10);
rows.add(JAN_4_F_20);
rows.add(JAN_4_U_30);
rows.add(JAN_6_M_10);
rows.add(JAN_7_F_20);
rows.add(JAN_8_U_30);
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
RowBucket actual = iter.next();
assertEquals(expectedDay1, actual.getRows());
actual = iter.next();
assertEquals(expectedDay2, actual.getRows());
actual = iter.next();
assertEquals(expectedDay3, actual.getRows());
actual = iter.next();
assertEquals(expectedDay4, actual.getRows());
actual = iter.next();
assertEquals(expectedDay6, actual.getRows());
actual = iter.next();
assertEquals(expectedDay7, actual.getRows());
actual = iter.next();
assertEquals(expectedDay8, actual.getRows());
}
@Test
public void testNodata()
{
intervals = new ArrayList<>();
intervals.add(INTERVAL_JAN_1_4);
intervals.add(INTERVAL_JAN_6_8);
rows = new ArrayList<>();
Sequence<Row> seq = Sequences.simple(rows);
RowBucketIterable rbi = new RowBucketIterable(seq, intervals, ONE_DAY);
Iterator<RowBucket> iter = rbi.iterator();
assertTrue(iter.hasNext());
RowBucket actual = iter.next();
assertEquals(Collections.emptyList(), actual.getRows());
}
}

View File

@ -0,0 +1,68 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Before;
import org.junit.Test;
import java.util.Comparator;
import java.util.List;
import static org.junit.Assert.assertEquals;
public class BaseAveragerFactoryTest
{
private AveragerFactory<Long, Long> fac;
@Before
public void setup()
{
fac = new BaseAveragerFactory<Long, Long>("test", 5, "field", 1)
{
@Override
public Averager<Long> createAverager()
{
return null;
}
@Override
public Comparator<Long> getComparator()
{
return null;
}
};
}
@Test
public void testGetDependentFields()
{
List<String> dependentFields = fac.getDependentFields();
assertEquals(1, dependentFields.size());
assertEquals("field", dependentFields.get(0));
}
@Test
public void testFinalization()
{
Long input = Long.valueOf(5L);
assertEquals(input, fac.finalizeComputation(input));
}
}

View File

@ -0,0 +1,156 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import java.util.Collections;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertNull;
import static org.junit.Assert.assertTrue;
/**
* Test class for BaseAverager
*/
public class BaseAveragerTest
{
public static class TestAverager extends BaseAverager<Integer, Integer>
{
public TestAverager(Class<Integer> clazz, int b, String name, String field, int cycleSize)
{
super(clazz, b, name, field, cycleSize);
}
@Override
protected Integer computeResult()
{
return 1;
}
}
@Test
public void testBaseAverager()
{
BaseAverager<Integer, Integer> avg = new TestAverager(Integer.class, 5, "test", "field", 1);
assertEquals("test", avg.getName());
assertEquals(5, avg.getNumBuckets());
assertEquals(5, avg.getBuckets().length);
assertTrue(avg.getBuckets().getClass().isArray());
}
@Test
public void testAddElement()
{
BaseAverager<Integer, Integer> avg = new TestAverager(Integer.class, 3, "test", "field", 1);
Object[] buckets = avg.getBuckets();
avg.addElement(Collections.singletonMap("field", 1), Collections.emptyMap());
assertEquals(Integer.valueOf(1), buckets[0]);
assertNull(buckets[1]);
assertNull(buckets[2]);
avg.addElement(Collections.singletonMap("field", 2), Collections.emptyMap());
assertEquals(Integer.valueOf(1), buckets[0]);
assertEquals(Integer.valueOf(2), buckets[1]);
assertNull(buckets[2]);
avg.addElement(Collections.singletonMap("field", 3), Collections.emptyMap());
assertEquals(Integer.valueOf(1), buckets[0]);
assertEquals(Integer.valueOf(2), buckets[1]);
assertEquals(Integer.valueOf(3), buckets[2]);
avg.addElement(Collections.singletonMap("field", 4), Collections.emptyMap());
assertEquals(Integer.valueOf(4), buckets[0]);
assertEquals(Integer.valueOf(2), buckets[1]);
assertEquals(Integer.valueOf(3), buckets[2]);
}
@Test
public void testSkip()
{
BaseAverager<Integer, Integer> avg = new TestAverager(Integer.class, 3, "test", "field", 1);
Object[] buckets = avg.getBuckets();
avg.addElement(Collections.singletonMap("field", 1), Collections.emptyMap());
avg.addElement(Collections.singletonMap("field", 1), Collections.emptyMap());
avg.addElement(Collections.singletonMap("field", 1), Collections.emptyMap());
assertEquals(Integer.valueOf(1), buckets[0]);
assertEquals(Integer.valueOf(1), buckets[1]);
assertEquals(Integer.valueOf(1), buckets[2]);
avg.skip();
assertNull(buckets[0]);
assertNotNull(buckets[1]);
assertNotNull(buckets[2]);
avg.skip();
assertNull(buckets[0]);
assertNull(buckets[1]);
assertNotNull(buckets[2]);
avg.skip();
assertNull(buckets[0]);
assertNull(buckets[1]);
assertNull(buckets[2]);
// poke some test data into the array
buckets[0] = Integer.valueOf(1);
avg.skip();
assertNull(buckets[0]);
assertNull(buckets[1]);
assertNull(buckets[2]);
}
@Test
public void testHasData()
{
BaseAverager<Integer, Integer> avg = new TestAverager(Integer.class, 3, "test", "field", 1);
assertFalse(avg.hasData());
avg.addElement(Collections.singletonMap("field", 1), Collections.emptyMap());
assertTrue(avg.hasData());
avg.skip();
avg.skip();
avg.skip();
assertFalse(avg.hasData());
}
@Test
public void testGetResult()
{
BaseAverager<Integer, Integer> avg = new TestAverager(Integer.class, 3, "test", "field", 1);
assertNull(avg.getResult());
avg.addElement(Collections.singletonMap("field", 1), Collections.emptyMap());
assertEquals(Integer.valueOf(1), avg.getResult());
}
}

View File

@ -0,0 +1,38 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import static org.hamcrest.CoreMatchers.instanceOf;
import static org.junit.Assert.assertThat;
public class DoubleMaxAveragerFactoryTest
{
@Test
public void testCreateAverager()
{
AveragerFactory<?, ?> fac = new DoubleMaxAveragerFactory("test", 5, 1, "field");
assertThat(fac.createAverager(), instanceOf(DoubleMaxAverager.class));
}
}

View File

@ -0,0 +1,57 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import java.util.Collections;
import java.util.HashMap;
import static org.junit.Assert.assertEquals;
public class DoubleMaxAveragerTest
{
@Test
public void testComputeResult()
{
BaseAverager<Number, Double> avg = new DoubleMaxAverager(3, "test", "field", 1);
assertEquals(Double.NEGATIVE_INFINITY, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", -1.1e100), new HashMap<>());
assertEquals(-1.1e100, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 1.0), new HashMap<>());
assertEquals(1.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", new Integer(1)), new HashMap<>());
assertEquals(1.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 5.0), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
assertEquals(5.0, avg.computeResult(), 0.0);
avg.skip();
assertEquals(3.0, avg.computeResult(), 0.0);
}
}

View File

@ -0,0 +1,37 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import static org.hamcrest.core.IsInstanceOf.instanceOf;
import static org.junit.Assert.assertThat;
public class DoubleMeanAveragerFactoryTest
{
@Test
public void testCreateAverager()
{
AveragerFactory<?, ?> fac = new DoubleMeanAveragerFactory("test", 5, 1, "field");
assertThat(fac.createAverager(), instanceOf(DoubleMeanAverager.class));
}
}

View File

@ -0,0 +1,58 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import java.util.Collections;
import java.util.HashMap;
import static org.junit.Assert.assertEquals;
public class DoubleMeanAveragerTest
{
@Test
public void testComputeResult()
{
BaseAverager<Number, Double> avg = new DoubleMeanAverager(3, "test", "field", 1);
assertEquals(0.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
assertEquals(1.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
assertEquals(2.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", new Integer(0)), new HashMap<>());
assertEquals(2.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
assertEquals(2.0, avg.computeResult(), 0.0);
avg.skip();
assertEquals(4.0 / 3, avg.computeResult(), 0.0);
}
}

View File

@ -0,0 +1,81 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import java.util.Collections;
import java.util.HashMap;
import static org.junit.Assert.assertEquals;
public class DoubleMeanAveragerWithPeriodTest
{
@Test
public void testComputeResult()
{
BaseAverager<Number, Double> averager = new DoubleMeanAverager(14, "test", "field", 7);
averager.addElement(Collections.singletonMap("field", 7.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 1.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 4.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 5.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 6.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 7.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 1.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 4.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 5.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 6.0), new HashMap<>());
assertEquals(7, averager.computeResult(), 0.0); // (7+7)/2
averager.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
assertEquals(1, averager.computeResult(), 0.0); // (1+1)/2
BaseAverager<Number, Double> averager1 = new DoubleMeanAverager(14, "test", "field", 3);
averager1.addElement(Collections.singletonMap("field", 1.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 1.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 1.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 1.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 1.0), new HashMap<>());
averager1.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
assertEquals(1, averager1.computeResult(), 0.0); // (1+1+1+1+1)/5
assertEquals(2, averager1.computeResult(), 0.0); // (2+2+2+2+2)/5
assertEquals(13.0 / 5, averager1.computeResult(), 0.0); // (3+3+3+3+1)/5
}
}

View File

@ -0,0 +1,37 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import static org.hamcrest.core.IsInstanceOf.instanceOf;
import static org.junit.Assert.assertThat;
public class DoubleMeanNoNullAveragerFactoryTest
{
@Test
public void testCreateAverager()
{
AveragerFactory<?, ?> fac = new DoubleMeanNoNullAveragerFactory("test", 5, 1, "field");
assertThat(fac.createAverager(), instanceOf(DoubleMeanNoNullAverager.class));
}
}

View File

@ -0,0 +1,82 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import java.util.Collections;
import java.util.HashMap;
import static org.junit.Assert.assertEquals;
public class DoubleMeanNoNullAveragerTest
{
@Test
public void testComputeResult()
{
BaseAverager<Number, Double> avg = new DoubleMeanNoNullAverager(3, "test", "field", 1);
assertEquals(Double.NaN, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
assertEquals(3.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
assertEquals(3.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", new Integer(0)), new HashMap<>());
assertEquals(2.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
assertEquals(2.0, avg.computeResult(), 0.0);
avg.skip();
assertEquals(2.0, avg.computeResult(), 0.0);
// testing cycleSize functionality
BaseAverager<Number, Double> averager = new DoubleMeanNoNullAverager(14, "test", "field", 7);
averager.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
assertEquals(2.0, averager.computeResult(), 0.0);
averager.addElement(Collections.singletonMap("field", 4.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 5.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 6.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 7.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 8.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 9.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", null), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 11.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 12.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 13.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 14.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 15.0), new HashMap<>());
averager.addElement(Collections.singletonMap("field", 16.0), new HashMap<>());
assertEquals(7.5, averager.computeResult(), 0.0);
averager.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
assertEquals(8.5, averager.computeResult(), 0.0);
}
}

View File

@ -0,0 +1,37 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import static org.hamcrest.core.IsInstanceOf.instanceOf;
import static org.junit.Assert.assertThat;
public class DoubleMinAveragerFactoryTest
{
@Test
public void testCreateAverager()
{
AveragerFactory<?, ?> fac = new DoubleMinAveragerFactory("test", 5, 1, "field");
assertThat(fac.createAverager(), instanceOf(DoubleMinAverager.class));
}
}

View File

@ -0,0 +1,58 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import java.util.Collections;
import java.util.HashMap;
import static org.junit.Assert.assertEquals;
public class DoubleMinAveragerTest
{
@Test
public void testComputeResult()
{
BaseAverager<Number, Double> avg = new DoubleMinAverager(3, "test", "field", 1);
assertEquals(Double.POSITIVE_INFINITY, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", -1.1e100), new HashMap<>());
assertEquals(-1.1e100, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 1.0), new HashMap<>());
assertEquals(-1.1e100, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", new Integer(1)), new HashMap<>());
assertEquals(-1.1e100, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 5.0), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2.0), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 3.0), new HashMap<>());
assertEquals(2.0, avg.computeResult(), 0.0);
avg.skip();
avg.skip();
assertEquals(3.0, avg.computeResult(), 0.0);
}
}

View File

@ -0,0 +1,37 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import static org.hamcrest.core.IsInstanceOf.instanceOf;
import static org.junit.Assert.assertThat;
public class LongMaxAveragerFactoryTest
{
@Test
public void testCreateAverager()
{
AveragerFactory<?, ?> fac = new LongMaxAveragerFactory("test", 5, 1, "field");
assertThat(fac.createAverager(), instanceOf(LongMaxAverager.class));
}
}

View File

@ -0,0 +1,57 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import java.util.Collections;
import java.util.HashMap;
import static org.junit.Assert.assertEquals;
public class LongMaxAveragerTest
{
@Test
public void testComputeResult()
{
BaseAverager<Number, Long> avg = new LongMaxAverager(3, "test", "field", 1);
assertEquals(Long.MIN_VALUE, (long) avg.computeResult());
avg.addElement(Collections.singletonMap("field", -1000000L), new HashMap<>());
assertEquals(-1000000, (long) avg.computeResult());
avg.addElement(Collections.singletonMap("field", 1L), new HashMap<>());
assertEquals(1, (long) avg.computeResult());
avg.addElement(Collections.singletonMap("field", new Integer(1)), new HashMap<>());
assertEquals(1, (long) avg.computeResult());
avg.addElement(Collections.singletonMap("field", 5L), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 3L), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2L), new HashMap<>());
assertEquals(5, (long) avg.computeResult());
avg.skip();
assertEquals(3, (long) avg.computeResult());
}
}

View File

@ -0,0 +1,37 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import static org.hamcrest.core.IsInstanceOf.instanceOf;
import static org.junit.Assert.assertThat;
public class LongMeanAveragerFactoryTest
{
@Test
public void testCreateAverager()
{
AveragerFactory<?, ?> fac = new LongMeanAveragerFactory("test", 5, 1, "field");
assertThat(fac.createAverager(), instanceOf(LongMeanAverager.class));
}
}

View File

@ -0,0 +1,57 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import java.util.Collections;
import java.util.HashMap;
import static org.junit.Assert.assertEquals;
public class LongMeanAveragerTest
{
@Test
public void testComputeResult()
{
BaseAverager<Number, Double> avg = new LongMeanAverager(3, "test", "field", 1);
assertEquals(0.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 3L), new HashMap<>());
assertEquals(1.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 3L), new HashMap<>());
assertEquals(2.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 3), new HashMap<>());
assertEquals(3.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 2L), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2L), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2L), new HashMap<>());
assertEquals(2.0, avg.computeResult(), 0.0);
avg.skip();
assertEquals(4.0 / 3, avg.computeResult(), 0.0);
}
}

View File

@ -0,0 +1,37 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import static org.hamcrest.core.IsInstanceOf.instanceOf;
import static org.junit.Assert.assertThat;
public class LongMeanNoNullAveragerFactoryTest
{
@Test
public void testCreateAverager()
{
AveragerFactory<?, ?> fac = new LongMeanNoNullAveragerFactory("test", 5, 1, "field");
assertThat(fac.createAverager(), instanceOf(LongMeanNoNullAverager.class));
}
}

View File

@ -0,0 +1,57 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import java.util.Collections;
import java.util.HashMap;
import static org.junit.Assert.assertEquals;
public class LongMeanNoNullAveragerTest
{
@Test
public void testComputeResult()
{
BaseAverager<Number, Double> avg = new LongMeanNoNullAverager(3, "test", "field", 1);
assertEquals(Double.NaN, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 3L), new HashMap<>());
assertEquals(3.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 3L), new HashMap<>());
assertEquals(3.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", new Integer(0)), new HashMap<>());
assertEquals(2.0, avg.computeResult(), 0.0);
avg.addElement(Collections.singletonMap("field", 2L), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2L), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2L), new HashMap<>());
assertEquals(2.0, avg.computeResult(), 0.0);
avg.skip();
assertEquals(2.0, avg.computeResult(), 0.0);
}
}

View File

@ -0,0 +1,37 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import static org.hamcrest.core.IsInstanceOf.instanceOf;
import static org.junit.Assert.assertThat;
public class LongMinAveragerFactoryTest
{
@Test
public void testCreateAverager()
{
AveragerFactory<?, ?> fac = new LongMinAveragerFactory("test", 5, 1, "field");
assertThat(fac.createAverager(), instanceOf(LongMinAverager.class));
}
}

View File

@ -0,0 +1,58 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.averagers;
import org.junit.Test;
import java.util.Collections;
import java.util.HashMap;
import static org.junit.Assert.assertEquals;
public class LongMinAveragerTest
{
@Test
public void testComputeResult()
{
BaseAverager<Number, Long> avg = new LongMinAverager(3, "test", "field", 1);
assertEquals(Long.MAX_VALUE, (long) avg.computeResult());
avg.addElement(Collections.singletonMap("field", -10000L), new HashMap<>());
assertEquals(-10000, (long) avg.computeResult());
avg.addElement(Collections.singletonMap("field", 1L), new HashMap<>());
assertEquals(-10000, (long) avg.computeResult());
avg.addElement(Collections.singletonMap("field", new Integer(1000)), new HashMap<>());
assertEquals(-10000, (long) avg.computeResult());
avg.addElement(Collections.singletonMap("field", 5L), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 2L), new HashMap<>());
avg.addElement(Collections.singletonMap("field", 3L), new HashMap<>());
assertEquals(2, (long) avg.computeResult());
avg.skip();
avg.skip();
assertEquals(3, (long) avg.computeResult());
}
}

View File

@ -0,0 +1,35 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.druid.query.movingaverage.test;
import com.fasterxml.jackson.databind.node.ArrayNode;
import com.fasterxml.jackson.databind.node.ObjectNode;
import java.util.Map;
/**
* Configuration for a unit test.
*/
public class TestConfig
{
public ObjectNode query;
public ArrayNode expectedOutput;
public Map<String, ArrayNode> intermediateResults;
}

View File

@ -0,0 +1,57 @@
query:
queryType: movingAverage
dataSource:
type: table
name: slice_pf_us_pl_dt_os
context: {
}
granularity:
type: period
period: P1D
intervals:
- 2017-01-02T00:00Z/2017-01-03T00:00Z
dimensions:
- gender
averagers:
- buckets: 2
name: trailing7DayAvgTimeSpent
fieldName: timeSpent
type: doubleMean
aggregations:
- name: timespent_secs
fieldName: timespent
type: longSum
postAggregations:
- type: arithmetic
name: timeSpent
fn: /
fields:
- type: fieldAccess
fieldName: timespent_secs
- type: constant
name: seconds_per_minute
value: 60.0
postAveragers: [
]
expectedOutput:
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
timespent_secs: 240.0
timeSpent: 4.0
trailing7DayAvgTimeSpent: 3.0
intermediateResults:
groupBy:
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: m
timespent_secs: 120.0
timeSpent: 2.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
timespent_secs: 240.0
timeSpent: 4.0

View File

@ -0,0 +1,57 @@
query:
queryType: movingAverage
dataSource:
type: table
name: slice_pf_us_pl_dt_os
context: {
}
granularity:
type: period
period: P1D
intervals:
- 2017-01-02T00:00Z/2017-01-03T00:00Z
dimensions:
- gender
averagers:
- buckets: 2
name: trailing7DayAvgTimeSpent
fieldName: timeSpent
type: doubleMean
aggregations:
- name: timespent_secs
fieldName: timespent
type: longSum
postAggregations:
- type: arithmetic
name: timeSpent
fn: /
fields:
- type: fieldAccess
fieldName: timespent_secs
- type: constant
name: seconds_per_minute
value: 60.0
postAveragers: [
]
expectedOutput:
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
timespent_secs: 240.0
timeSpent: 4.0
trailing7DayAvgTimeSpent: 3.0
intermediateResults:
groupBy:
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: m
timespent_secs: 120.0
timeSpent: 2.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
timespent_secs: 240.0
timeSpent: 4.0

View File

@ -0,0 +1,51 @@
query:
queryType: movingAverage
dataSource:
type: table
name: slice_pf_us_pl_dt_os
context: {
}
granularity:
type: period
period: P1D
intervals:
- 2017-01-02T00:00Z/2017-01-03T00:00Z
dimensions: []
averagers:
- buckets: 2
name: trailing7DayAvgTimeSpent
fieldName: timeSpent
type: doubleMean
aggregations:
- name: timespent_secs
fieldName: timespent
type: longSum
postAggregations:
- type: arithmetic
name: timeSpent
fn: /
fields:
- type: fieldAccess
fieldName: timespent_secs
- type: constant
name: seconds_per_minute
value: 60.0
postAveragers: [
]
expectedOutput:
- version: v1
timestamp: 2017-01-02T00:00Z
event:
timespent_secs: 240.0
timeSpent: 4.0
trailing7DayAvgTimeSpent: 3.0
intermediateResults:
timeseries:
- timestamp: 2017-01-01T00:00Z
result:
timespent_secs: 120.0
timeSpent: 2.0
- timestamp: 2017-01-02T00:00Z
result:
timespent_secs: 240.0
timeSpent: 4.0

View File

@ -0,0 +1,78 @@
query:
queryType: movingAverage
dataSource:
type: table
name: slice_pf_us_pl_dt_os
context: {
}
granularity:
type: period
period: P1D
intervals:
- 2017-01-02T00:00Z/2017-01-03T00:00Z
dimensions:
- gender
averagers:
- buckets: 2
name: trailing7DayAvgTimeSpent
fieldName: timeSpent
type: doubleMean
aggregations:
- name: timespent_secs
fieldName: timespent
type: longSum
- name: someSum
fieldName: someSum_field
type: doubleSum
postAggregations:
- type: arithmetic
name: timeSpent
fn: /
fields:
- type: fieldAccess
fieldName: timespent_secs
- type: constant
name: seconds_per_minute
value: 60.0
postAveragers: [
]
expectedOutput:
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
timespent_secs: 240
timeSpent: 4.0
trailing7DayAvgTimeSpent: 3.0
someSum: 3.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: f
timespent_secs: 0
timeSpent: 0.0
trailing7DayAvgTimeSpent: 1.0
someSum: 0.0
intermediateResults:
groupBy:
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: m
timespent_secs: 120
timeSpent: 2.0
someSum: 5.0
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: f
timespent_secs: 120
timeSpent: 2.0
someSum: 2.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
timespent_secs: 240
timeSpent: 4.0
someSum: 3.0

View File

@ -0,0 +1,81 @@
query:
queryType: movingAverage
dataSource:
type: table
name: slice_pf_us_pl_dt_os
context: {
}
granularity:
type: period
period: P1D
intervals:
- 2017-01-02T00:00Z/2017-01-03T00:00Z
dimensions:
- gender
averagers:
- buckets: 2
name: trailing7DayAvgTimeSpent
fieldName: timeSpent
type: doubleMean
aggregations:
- name: timespent_secs
fieldName: timespent
type: longSum
postAggregations:
- type: arithmetic
name: timeSpent
fn: /
fields:
- type: fieldAccess
fieldName: timespent_secs
- type: constant
name: seconds_per_minute
value: 60.0
postAveragers: [
]
limitSpec:
type: default
columns:
- dimension: trailing7DayAvgTimeSpent
expectedOutput:
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
timespent_secs: 240.0
timeSpent: 4.0
trailing7DayAvgTimeSpent: 3.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: f
timespent_secs: 480.0
timeSpent: 8.0
trailing7DayAvgTimeSpent: 6.0
intermediateResults:
groupBy:
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: m
timespent_secs: 120.0
timeSpent: 2.0
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: f
timespent_secs: 240.0
timeSpent: 4.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
timespent_secs: 240.0
timeSpent: 4.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: f
timespent_secs: 480.0
timeSpent: 8.0

View File

@ -0,0 +1,82 @@
query:
queryType: movingAverage
dataSource:
type: table
name: slice_pf_us_pl_dt_os
context: {
}
granularity:
type: period
period: P1D
intervals:
- 2017-01-02T00:00Z/2017-01-03T00:00Z
dimensions:
- gender
averagers:
- buckets: 2
name: trailing7DayAvgTimeSpent
fieldName: timeSpent
type: doubleMean
aggregations:
- name: timespent_secs
fieldName: timespent
type: longSum
postAggregations:
- type: arithmetic
name: timeSpent
fn: /
fields:
- type: fieldAccess
fieldName: timespent_secs
- type: constant
name: seconds_per_minute
value: 60.0
postAveragers: [
]
limitSpec:
type: default
columns:
- dimension: trailing7DayAvgTimeSpent
direction: DESC
expectedOutput:
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: f
timespent_secs: 480.0
timeSpent: 8.0
trailing7DayAvgTimeSpent: 6.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
timespent_secs: 240.0
timeSpent: 4.0
trailing7DayAvgTimeSpent: 3.0
intermediateResults:
groupBy:
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: m
timespent_secs: 120.0
timeSpent: 2.0
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: f
timespent_secs: 240.0
timeSpent: 4.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
timespent_secs: 240.0
timeSpent: 4.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: f
timespent_secs: 480.0
timeSpent: 8.0

View File

@ -0,0 +1,84 @@
query:
queryType: movingAverage
dataSource:
type: table
name: slice_pf_us_uc_ud
context: {
}
granularity:
type: period
period: P1D
intervals:
- 2017-01-02T00:00Z/2017-01-03T00:00Z
dimensions:
- gender
averagers:
- buckets: 7
name: trailing7DayAvgTotalPageViews
fieldName: totalPageViews
type: doubleMean
aggregations:
- name: addPageViews
fieldName: additive_page_views
type: longSum
- name: pageViews
fieldName: other_page_views
type: longSum
postAggregations:
- type: arithmetic
name: totalPageViews
fn: +
fields:
- type: fieldAccess
fieldName: addPageViews
- type: fieldAccess
fieldName: pageViews
postAveragers: [
]
limitSpec:
type: default
columns:
- dimension: addPageViews
direction: DESC
dimension: trailing7DayAvgTotalPageViews
direction: DESC
expectedOutput:
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: f
addPageViews: 1.0
pageViews: 2.0
totalPageViews: 3.0
trailing7DayAvgTotalPageViews: 3.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
addPageViews: 0
pageViews: 0
totalPageViews: 0.0
trailing7DayAvgTotalPageViews: 2.142857142857143
intermediateResults:
groupBy:
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: m
addPageViews: 5.0
pageViews: 10.0
totalPageViews: 15.0
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: f
addPageViews: 6.0
pageViews: 12.0
totalPageViews: 18.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: f
addPageViews: 1.0
pageViews: 2.0
totalPageViews: 3.0

View File

@ -0,0 +1,82 @@
query:
queryType: movingAverage
dataSource:
type: table
name: slice_pf_us_uc_ud
context: {
}
granularity:
type: period
period: P1D
intervals:
- 2017-01-02T00:00Z/2017-01-03T00:00Z
dimensions:
- gender
averagers:
- buckets: 7
name: trailing7DayAvgTotalPageViews
fieldName: totalPageViews
type: doubleMean
aggregations:
- name: addPageViews
fieldName: additive_page_views
type: longSum
- name: pageViews
fieldName: other_page_views
type: longSum
postAggregations:
- type: arithmetic
name: totalPageViews
fn: +
fields:
- type: fieldAccess
fieldName: addPageViews
- type: fieldAccess
fieldName: pageViews
postAveragers: [
]
limitSpec:
type: default
columns:
- dimension: addPageViews
direction: DESC
expectedOutput:
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: f
addPageViews: 1.0
pageViews: 2.0
totalPageViews: 3.0
trailing7DayAvgTotalPageViews: 3.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: m
addPageViews: 0
pageViews: 0
totalPageViews: 0.0
trailing7DayAvgTotalPageViews: 2.142857142857143
intermediateResults:
groupBy:
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: m
addPageViews: 5.0
pageViews: 10.0
totalPageViews: 15.0
- version: v1
timestamp: 2017-01-01T00:00Z
event:
gender: f
addPageViews: 6.0
pageViews: 12.0
totalPageViews: 18.0
- version: v1
timestamp: 2017-01-02T00:00Z
event:
gender: f
addPageViews: 1.0
pageViews: 2.0
totalPageViews: 3.0

View File

@ -173,6 +173,7 @@
<module>extensions-contrib/materialized-view-maintenance</module> <module>extensions-contrib/materialized-view-maintenance</module>
<module>extensions-contrib/materialized-view-selection</module> <module>extensions-contrib/materialized-view-selection</module>
<module>extensions-contrib/momentsketch</module> <module>extensions-contrib/momentsketch</module>
<module>extensions-contrib/moving-average-query</module>
<!-- distribution packaging --> <!-- distribution packaging -->
<module>distribution</module> <module>distribution</module>
</modules> </modules>