mirror of https://github.com/apache/druid.git
Merge pull request #1302 from metamx/fix-groupby-doc
Updates groupBy doc:
This commit is contained in:
commit
f15a41270a
|
@ -13,36 +13,40 @@ An example groupBy query object is shown below:
|
||||||
"queryType": "groupBy",
|
"queryType": "groupBy",
|
||||||
"dataSource": "sample_datasource",
|
"dataSource": "sample_datasource",
|
||||||
"granularity": "day",
|
"granularity": "day",
|
||||||
"dimensions": ["dim1", "dim2"],
|
"dimensions": ["country", "device"],
|
||||||
"limitSpec": { "type": "default", "limit": 5000, "columns": ["dim1", "metric1"] },
|
"limitSpec": { "type": "default", "limit": 5000, "columns": ["country", "data_transfer"] },
|
||||||
"filter": {
|
"filter": {
|
||||||
"type": "and",
|
"type": "and",
|
||||||
"fields": [
|
"fields": [
|
||||||
{ "type": "selector", "dimension": "sample_dimension1", "value": "sample_value1" },
|
{ "type": "selector", "dimension": "carrier", "value": "AT&T" },
|
||||||
{ "type": "or",
|
{ "type": "or",
|
||||||
"fields": [
|
"fields": [
|
||||||
{ "type": "selector", "dimension": "sample_dimension2", "value": "sample_value2" },
|
{ "type": "selector", "dimension": "make", "value": "Apple" },
|
||||||
{ "type": "selector", "dimension": "sample_dimension3", "value": "sample_value3" }
|
{ "type": "selector", "dimension": "make", "value": "Samsung" }
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"aggregations": [
|
"aggregations": [
|
||||||
{ "type": "longSum", "name": "sample_name1", "fieldName": "sample_fieldName1" },
|
{ "type": "longSum", "name": "total_usage", "fieldName": "user_count" },
|
||||||
{ "type": "doubleSum", "name": "sample_name2", "fieldName": "sample_fieldName2" }
|
{ "type": "doubleSum", "name": "data_transfer", "fieldName": "data_transfer" }
|
||||||
],
|
],
|
||||||
"postAggregations": [
|
"postAggregations": [
|
||||||
{ "type": "arithmetic",
|
{ "type": "arithmetic",
|
||||||
"name": "sample_divide",
|
"name": "avg_usage",
|
||||||
"fn": "/",
|
"fn": "/",
|
||||||
"fields": [
|
"fields": [
|
||||||
{ "type": "fieldAccess", "name": "sample_name1", "fieldName": "sample_fieldName1" },
|
{ "type": "fieldAccess", "fieldName": "data_transfer" },
|
||||||
{ "type": "fieldAccess", "name": "sample_name2", "fieldName": "sample_fieldName2" }
|
{ "type": "fieldAccess", "fieldName": "total_usage" }
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"intervals": [ "2012-01-01T00:00:00.000/2012-01-03T00:00:00.000" ],
|
"intervals": [ "2012-01-01T00:00:00.000/2012-01-03T00:00:00.000" ],
|
||||||
"having": { "type": "greaterThan", "aggregation": "sample_name1", "value": 0 }
|
"having": {
|
||||||
|
"type": "greaterThan",
|
||||||
|
"aggregation": "total_usage",
|
||||||
|
"value": 100
|
||||||
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -62,7 +66,7 @@ There are 11 main parts to a groupBy query:
|
||||||
|intervals|A JSON Object representing ISO-8601 Intervals. This defines the time ranges to run the query over.|yes|
|
|intervals|A JSON Object representing ISO-8601 Intervals. This defines the time ranges to run the query over.|yes|
|
||||||
|context|An additional JSON Object which can be used to specify certain flags.|no|
|
|context|An additional JSON Object which can be used to specify certain flags.|no|
|
||||||
|
|
||||||
To pull it all together, the above query would return *n\*m* data points, up to a maximum of 5000 points, where n is the cardinality of the "dim1" dimension, m is the cardinality of the "dim2" dimension, each day between 2012-01-01 and 2012-01-03, from the "sample_datasource" table. Each data point contains the (long) sum of sample_fieldName1 if the value of the data point is greater than 0, the (double) sum of sample_fieldName2 and the (double) the result of sample_fieldName1 divided by sample_fieldName2 for the filter set for a particular grouping of "dim1" and "dim2". The output looks like this:
|
To pull it all together, the above query would return *n\*m* data points, up to a maximum of 5000 points, where n is the cardinality of the `country` dimension, m is the cardinality of the `device` dimension, each day between 2012-01-01 and 2012-01-03, from the `sample_datasource` table. Each data point contains the (long) sum of `total_usage` if the value of the data point is greater than 100, the (double) sum of `data_transfer` and the (double) result of `total_usage` divided by `data_transfer` for the filter set for a particular grouping of `country` and `device`. The output looks like this:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
[
|
[
|
||||||
|
@ -70,22 +74,22 @@ To pull it all together, the above query would return *n\*m* data points, up to
|
||||||
"version" : "v1",
|
"version" : "v1",
|
||||||
"timestamp" : "2012-01-01T00:00:00.000Z",
|
"timestamp" : "2012-01-01T00:00:00.000Z",
|
||||||
"event" : {
|
"event" : {
|
||||||
"dim1" : <some_dim_value_one>,
|
"country" : <some_dim_value_one>,
|
||||||
"dim2" : <some_dim_value_two>,
|
"device" : <some_dim_value_two>,
|
||||||
"sample_name1" : <some_sample_name_value_one>,
|
"total_usage" : <some_value_one>,
|
||||||
"sample_name2" :<some_sample_name_value_two>,
|
"data_transfer" :<some_value_two>,
|
||||||
"sample_divide" : <some_sample_divide_value>
|
"avg_usage" : <some_avg_usage_value>
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"version" : "v1",
|
"version" : "v1",
|
||||||
"timestamp" : "2012-01-01T00:00:00.000Z",
|
"timestamp" : "2012-01-01T00:00:12.000Z",
|
||||||
"event" : {
|
"event" : {
|
||||||
"dim1" : <some_other_dim_value_one>,
|
"dim1" : <some_other_dim_value_one>,
|
||||||
"dim2" : <some_other_dim_value_two>,
|
"dim2" : <some_other_dim_value_two>,
|
||||||
"sample_name1" : <some_other_sample_name_value_one>,
|
"sample_name1" : <some_other_value_one>,
|
||||||
"sample_name2" :<some_other_sample_name_value_two>,
|
"sample_name2" :<some_other_value_two>,
|
||||||
"sample_divide" : <some_other_sample_divide_value>
|
"avg_usage" : <some_other_avg_usage_value>
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
...
|
...
|
||||||
|
|
Loading…
Reference in New Issue