* Add jsonPath functions support
* Add jsonPath function test for Avro
* Add jsonPath function length() to Orc
* Add jsonPath function length() to Parquet
* Add more tests to ORC format
* update doc
* Fix exception during ingestion
* Add IT test case
* Revert "Fix exception during ingestion"
This reverts commit 5a5484b9ea.
* update IT test case
* Add 'keys()'
* Commit IT test case
* Fix UT
changes:
* adds new config, druid.expressions.useStrictBooleans which make longs the official boolean type of all expressions
* vectorize logical operators and boolean functions, some only if useStrictBooleans is true
* add impl
* fix checkstyle
* add test
* add test
* add unit tests
* fix unit tests
* fix unit tests
* fix unit tests
* add IT
* add IT
* add comments
* fix spelling
* IMPLY-4344: Adding safe divide function along with testcases and documentation updates
* Changing based on review comments
* Addressing review comments, fixing coding style, docs and spelling
* Checkstyle passes for all code
* Fixing expected results for infinity
* Revert "Fixing expected results for infinity"
This reverts commit 5fd5cd480d.
* Updating test result and a space in docs
Add support for hadoop 3 profiles . Most of the details are captured in #11791 .
We use a combination of maven profiles and resource filtering to achieve this. Hadoop2 is supported by default and a new maven profile with the name hadoop3 is created. This will allow the user to choose the profile which is best suited for the use case.
* Add druid.sql.approxCountDistinct.function property.
The new property allows admins to configure the implementation for
APPROX_COUNT_DISTINCT and COUNT(DISTINCT expr) in approximate mode.
The motivation for adding this setting is to enable site admins to
switch the default HLL implementation to DataSketches.
For example, an admin can set:
druid.sql.approxCountDistinct.function = APPROX_COUNT_DISTINCT_DS_HLL
* Fixes
* Fix tests.
* Remove erroneous cannotVectorize.
* Remove unused import.
* Remove unused test imports.
### Description
Today we ingest a number of high cardinality metrics into Druid across dimensions. These metrics are rolled up on a per minute basis, and are very useful when looking at metrics on a partition or client basis. Events is another class of data that provides useful information about a particular incident/scenario inside a Kafka cluster. Events themselves are carried inside kafka payload, but nonetheless there are some very useful metadata that is carried in kafka headers that can serve as useful dimension for aggregation and in turn bringing better insights.
PR(https://github.com/apache/druid/pull/10730) introduced support of Kafka headers in InputFormats.
We still need an input format to parse out the headers and translate those into relevant columns in Druid. Until that’s implemented, none of the information available in the Kafka message headers would be exposed. So first there is a need to write an input format that can parse headers in any given format(provided we support the format) like we parse payloads today. Apart from headers there is also some useful information present in the key portion of the kafka record. We also need a way to expose the data present in the key as druid columns. We need a generic way to express at configuration time what attributes from headers, key and payload need to be ingested into druid. We need to keep the design generic enough so that users can specify different parsers for headers, key and payload.
This PR is designed to solve the above by providing wrapper around any existing input formats and merging the data into a single unified Druid row.
Lets look at a sample input format from the above discussion
"inputFormat":
{
"type": "kafka", // New input format type
"headerLabelPrefix": "kafka.header.", // Label prefix for header columns, this will avoid collusions while merging columns
"recordTimestampLabelPrefix": "kafka.", // Kafka record's timestamp is made available in case payload does not carry timestamp
"headerFormat": // Header parser specifying that values are of type string
{
"type": "string"
},
"valueFormat": // Value parser from json parsing
{
"type": "json",
"flattenSpec": {
"useFieldDiscovery": true,
"fields": [...]
}
},
"keyFormat": // Key parser also from json parsing
{
"type": "json"
}
}
Since we have independent sections for header, key and payload, it will enable parsing each section with its own parser, eg., headers coming in as string and payload as json.
KafkaInputFormat will be the uber class extending inputFormat interface and will be responsible for creating individual parsers for header, key and payload, blend the data resolving conflicts in columns and generating a single unified InputRow for Druid ingestion.
"headerFormat" will allow users to plug parser type for the header values and will add default header prefix as "kafka.header."(can be overridden) for attributes to avoid collision while merging attributes with payload.
Kafka payload parser will be responsible for parsing the Value portion of the Kafka record. This is where most of the data will come from and we should be able to plugin existing parser. One thing to note here is that if batching is performed, then the code is augmenting header and key values to every record in the batch.
Kafka key parser will handle parsing Key portion of the Kafka record and will ingest the Key with dimension name as "kafka.key".
## KafkaInputFormat Class:
This is the class that orchestrates sending the consumerRecord to each parser, retrieve rows, merge the columns into one final row for Druid consumption. KafkaInputformat should make sure to release the resources that gets allocated as a part of reader in CloseableIterator<InputRow> during normal and exception cases.
During conflicts in dimension/metrics names, the code will prefer dimension names from payload and ignore the dimension either from headers/key. This is done so that existing input formats can be easily migrated to this new format without worrying about losing information.
* Configurable maxStreamLength for doubles sketches
* fix equals/hashcode and it test failure
* fix test
* fix it test
* benchmark
* doc
* grouping key
* fix comment
* dependency check
* Update docs/development/extensions-core/datasketches-quantiles.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Update docs/querying/sql.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Update docs/querying/sql.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Update docs/querying/sql.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Update docs/querying/sql.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Update docs/querying/sql.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Update docs/querying/sql.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Update docs/querying/sql.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Add details to the Docker tutorial
Added links, explanations and other details to the Docker
tutorial to make it easier for first-time users.
* Fix spelling error
And add "Jupyter" to the spelling dictionary.
* Update docs/tutorials/docker.md
* Update docs/tutorials/docker.md
Co-authored-by: sthetland <steve.hetland@imply.io>
* Update docs/tutorials/docker.md
Co-authored-by: sthetland <steve.hetland@imply.io>
* Update docs/tutorials/docker.md
* Update docs/tutorials/docker.md
Co-authored-by: sthetland <steve.hetland@imply.io>
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Co-authored-by: sthetland <steve.hetland@imply.io>
Fixes#11297.
Description
Description and design in the proposal #11297
Key changed/added classes in this PR
*DataSegmentPusher
*ShuffleClient
*PartitionStat
*PartitionLocation
*IntermediaryDataManager
* add binary_byte_format/decimal_byte_format/decimal_format
* clean code
* fix doc
* fix review comments
* add spelling check rules
* remove extra param
* improve type handling and null handling
* remove extra zeros
* fix tests and add space between unit suffix and number as most size-format functions do
* fix tests
* add examples
* change function names according to review comments
* fix merge
Signed-off-by: frank chen <frank.chen021@outlook.com>
* no need to configure NullHandling explicitly for tests
Signed-off-by: frank chen <frank.chen021@outlook.com>
* fix tests in SQL-Compatible mode
Signed-off-by: frank chen <frank.chen021@outlook.com>
* Resolve review comments
* Update SQL test case to check null handling
* Fix intellij inspections
* Add more examples
* Fix example
This change allows the selection of a specific broker service (or broker tier) by the Router.
The newly added ManualTieredBrokerSelectorStrategy works as follows:
Check for the parameter brokerService in the query context. If this is a valid broker service, use it.
Check if the field defaultManualBrokerService has been set in the strategy. If this is a valid broker service, use it.
Move on to the next strategy
* Avro union support
* Document new union support
* Add support for AvroStreamInputFormat and fix checkstyle
* Extend multi-member union test schema and format
* Some additional docs and add Enums to spelling
* Rename explodeUnions -> extractUnions
* explode -> extract
* ByType
* Correct spelling error
With this change, Druid will only support ZooKeeper 3.5.x and later.
In order to support Java 15 we need to switch to ZK 3.5.x client libraries and drop support for ZK 3.4.x
(see #10780 for the detailed reasons)
* remove ZooKeeper 3.4.x compatibility
* exclude additional ZK 3.5.x netty dependencies to ensure we use our version
* keep ZooKeeper version used for integration tests in sync with client library version
* remove the need to specify ZK version at runtime for docker
* add support to run integration tests with JDK 15
* build and run unit tests with Java 15 in travis
* allow user to set group.id for Kafka ingestion task
* fix test coverage by removing deprecated code and add doc
* fix typo
* Update docs/development/extensions-core/kafka-ingestion.md
Co-authored-by: frank chen <frankchen@apache.org>
Co-authored-by: frank chen <frankchen@apache.org>
* lay the groundwork for throttling replicant loads per RunRules execution
* Add dynamic coordinator config to control new replicant threshold.
* remove redundant line
* add some unit tests
* fix checkstyle error
* add documentation for new dynamic config
* improve docs and logs
* Alter how null is handled for new config. If null, manually set as default
* ARRAY_AGG sql aggregator function
* add javadoc
* spelling
* review stuff, return null instead of empty when nil input
* review stuff
* Update sql.md
* use type inference for finalize, refactor some things
* add experimental expression aggregator
* add test
* fix lgtm
* fix test
* adjust test
* use not null constant
* array_set_concat docs
* add equals and hashcode and tostring
* fix it
* spelling
* do multi-value magic for expression agg, more javadocs, tests
* formatting
* fix inspection
* more better
* nullable
* add protobuf inputformat
* repair pom
* alter intermediateRow to type of Dynamicmessage
* add document
* refine test
* fix document
* add protoBytesDecoder
* refine document and add ser test
* add hash
* add schema registry ser test
Co-authored-by: yuanyi <yuanyi@freewheel.tv>
* Add ability to wait for segment availability for batch jobs
* IT updates
* fix queries in legacy hadoop IT
* Fix broken indexing integration tests
* address an lgtm flag
* spell checker still flagging for hadoop doc. adding under that file header too
* fix compaction IT
* Updates to wait for availability method
* improve unit testing for patch
* fix bad indentation
* refactor waitForSegmentAvailability
* Fixes based off of review comments
* cleanup to get compile after merging with master
* fix failing test after previous logic update
* add back code that must have gotten deleted during conflict resolution
* update some logging code
* fixes to get compilation working after merge with master
* reset interrupt flag in catch block after code review pointed it out
* small changes following self-review
* fixup some issues brought on by merge with master
* small changes after review
* cleanup a little bit after merge with master
* Fix potential resource leak in AbstractBatchIndexTask
* syntax fix
* Add a Compcation TuningConfig type
* add docs stipulating the lack of support by Compaction tasks for the new config
* Fixup compilation errors after merge with master
* Remove erreneous newline
* DruidInputSource: Fix issues in column projection, timestamp handling.
DruidInputSource, DruidSegmentReader changes:
1) Remove "dimensions" and "metrics". They are not necessary, because we
can compute which columns we need to read based on what is going to
be used by the timestamp, transform, dimensions, and metrics.
2) Start using ColumnsFilter (see below) to decide which columns we need
to read.
3) Actually respect the "timestampSpec". Previously, it was ignored, and
the timestamp of the returned InputRows was set to the `__time` column
of the input datasource.
(1) and (2) together fix a bug in which the DruidInputSource would not
properly read columns that are used as inputs to a transformSpec.
(3) fixes a bug where the timestampSpec would be ignored if you attempted
to set the column to something other than `__time`.
(1) and (3) are breaking changes.
Web console changes:
1) Remove "Dimensions" and "Metrics" from the Druid input source.
2) Set timestampSpec to `{"column": "__time", "format": "millis"}` for
compatibility with the new behavior.
Other changes:
1) Add ColumnsFilter, a new class that allows input readers to determine
which columns they need to read. Currently, it's only used by the
DruidInputSource, but it could be used by other columnar input sources
in the future.
2) Add a ColumnsFilter to InputRowSchema.
3) Remove the metric names from InputRowSchema (they were unused).
4) Add InputRowSchemas.fromDataSchema method that computes the proper
ColumnsFilter for given timestamp, dimensions, transform, and metrics.
5) Add "getRequiredColumns" method to TransformSpec to support the above.
* Various fixups.
* Uncomment incorrectly commented lines.
* Move TransformSpecTest to the proper module.
* Add druid.indexer.task.ignoreTimestampSpecForDruidInputSource setting.
* Fix.
* Fix build.
* Checkstyle.
* Misc fixes.
* Fix test.
* Move config.
* Fix imports.
* Fixup.
* Fix ShuffleResourceTest.
* Add import.
* Smarter exclusions.
* Fixes based on tests.
Also, add TIME_COLUMN constant in the web console.
* Adjustments for tests.
* Reorder test data.
* Update docs.
* Update docs to say Druid 0.22.0 instead of 0.21.0.
* Fix test.
* Fix ITAutoCompactionTest.
* Changes from review & from merging.
* first pass compaction refactor. includes updated behavior for queryGranularity. removes duplicated doc
* fix links, typos, some reorganization
* fix spelling. TBD still there for work in progress
* updates tutorial examples, adds more clarification around compaction use cases
* add granularity spec to automatic compaction config
* final edits
* spelling fixes
* apply suggestions from review
* upadtes from review
* last edits
* move note
* clarify null
* fix links & spelling
* latest review
* edits to auto-compaction config
* add back rollup
* fix links & spelling
* Update compaction.md
add granularityspec to example