Add segmentLoadWait as a query context parameter. If this is true, the controller queries the broker and waits till the segments created (if any) have been loaded by the load rules. The controller also provides this information in the live reports and task reports. If this is false, the controller exits immediately after finishing the query.
Row-based frames, and by extension, MSQ now supports numeric array types. This means that all queries consuming or producing arrays would also work with MSQ. Numeric arrays can also be ingested via MSQ. Post this patch, queries like, SELECT [1, 2] would work with MSQ since they consume a numeric array, instead of failing with an unsupported column type exception.
This patch introduces "processor managers" to processor factories, as a replacement for the sequence of processors. Processor managers can use the results of earlier processors to influence the creation of later processors, which provides us with the building block we need to ensure that broadcast join data is only read once.
In particular, when broadcast join is happening, the BaseFrameProcessorFactory now uses a ChainedProcessorManager to first run BroadcastJoinSegmentMapFnProcessor (in a single thread), and then run all of the regular processors (possibly multithreaded).
This change updates dependencies as needed and fixes tests to remove code incompatible with Java 21
As a result all unit tests now pass with Java 21.
* update maven-shade-plugin to 3.5.0 and follow-up to #15042
* explain why we need to override configuration when specifying outputFile
* remove configuration from dependency management in favor of explicit overrides in each module.
* update to mockito to 5.5.0 for Java 21 support when running with Java 11+
* continue using latest mockito 4.x (4.11.0) when running with Java 8
* remove need to mock private fields
* exclude incorrectly declared mockito dependency from pac4j-oidc
* remove mocking of ByteBuffer, since sealed classes can no longer be mocked in Java 21
* add JVM options workaround for system-rules junit plugin not supporting Java 18+
* exclude older versions of byte-buddy from assertj-core
* fix for Java 19 changes in floating point string representation
* fix missing InitializedNullHandlingTest
* update easymock to 5.2.0 for Java 21 compatibility
* update animal-sniffer-plugin to 1.23
* update nl.jqno.equalsverifier to 3.15.1
* update exec-maven-plugin to 3.1.0
This change is meant to fix a issue where passing too large of a task payload to the mm-less task runner will cause the peon to fail to startup because the payload is passed (compressed) as a environment variable (TASK_JSON). In linux systems the limit for a environment variable is commonly 128KB, for windows systems less than this. Setting a env variable longer than this results in a bunch of "Argument list too long" errors.
Upgrade maven shade plugin to try to fix build failures
Sometimes we get maven shade errors in our integ tests becasue we don't run clean in between runs to clear the cache in order to speed them up. This can lead to the below error.
Error: Failed to execute goal org.apache.maven.plugins:maven-shade-plugin:3.2.4:shade (opentelemetry-extension) on project opentelemetry-emitter: Error creating shaded jar: duplicate entry: META-INF/services/org.apache.druid.opentelemetry.shaded.io.grpc.NameResolverProvider
See: https://issues.apache.org/jira/projects/MSHADE/issues/MSHADE-425?filter=allissues
An example run that failed: https://github.com/apache/druid/actions/runs/6301662092/job/17117142375?pr=14887
According to the ticket this is fixed by updating shade to 3.4.1.
When I updated to 3.4.1 I kept running into a different issue during static checks. (Caused by: java.lang.NoClassDefFoundError: com/github/rvesse/airline/parser/errors/ParseException)
I had to add the createDependencyReducedPom: false to get the build to pass.
The dependency reduced pom feature was added in 3.3.0 which we were not using before so setting it explicitly to false should not be a issue. https://issues.apache.org/jira/browse/MSHADE-36)
The aggregators had incorrect types for getResultType when shouldFinalze
is false. They had the finalized type, but they should have had the
intermediate type.
Also includes a refactor of how ExprMacroTable is handled in tests, to make
it easier to add tests for this to the MSQ module. The bug was originally
noticed because the incorrect result types caused MSQ queries with DS_HLL
to behave erratically.
* Remove stale comment since we're on avro version 1.11.1
* Update exception blocks. With 1.11.1, read() only throws IOException.
* Unit tests
* Cleanup and add more tests.
This entails:
Removing the enableUnnest flag and additional machinery
Updating the datasource plan and frame processors to support unnest
Adding support in MSQ for UnnestDataSource and FilteredDataSource
CalciteArrayTest now has a MSQ test component
Additional tests for Unnest on MSQ
With PR #14322 , MSQ insert/Replace q's will wait for segment to be loaded on the historical's before finishing.
The patch introduces a bug where in the main thread had a thread.sleep() which could not be interrupted via the cancel calls from the overlord.
This new patch addressed that problem by moving the thread.sleep inside a thread of its own. Thus the main thread is now waiting on the future object of this execution.
The cancel call can now shutdown the executor service via another method thus unblocking the main thread to proceed.
This commit pulls out some changes from #14407 to simplify that PR.
Changes:
- Rename `IndexerMetadataStorageCoordinator.announceHistoricalSegments` to `commitSegments`
- Rename the overloaded method to `commitSegmentsAndMetadata`
- Fix some typos
Currently, only the user who has submitted the async query has permission to interact with the status APIs for that async query. However, often we want an administrator to interact with these resources as well.
Druid handles these with the STATE resource traditionally, and if the requesting user has necessary permissions on it as well, alternatively, they should be allowed to interact with the status APIs, irrespective of whether they are the submitter of the query.
* Add IS [NOT] DISTINCT FROM to SQL and join matchers.
Changes:
1) Add "isdistinctfrom" and "notdistinctfrom" native expressions.
2) Add "IS [NOT] DISTINCT FROM" to SQL. It uses the new native expressions
when generating expressions, and is treated the same as equals and
not-equals when generating native filters on literals.
3) Update join matchers to have an "includeNull" parameter that determines
whether we are operating in "equals" mode or "is not distinct from"
mode.
* Main changes:
- Add ARRAY handling to "notdistinctfrom" and "isdistinctfrom".
- Include null in pushed-down filters when using "notdistinctfrom" in a join.
Other changes:
- Adjust join filter analyzer to more explicitly use InDimFilter's ValuesSets,
relying less on remembering to get it right to avoid copies.
* Remove unused "wrap" method.
* Fixes.
* Remove methods we do not need.
* Fix bug with INPUT_REF.
* SQL: Plan non-equijoin conditions as cross join followed by filter.
Druid has previously refused to execute joins with non-equality-based
conditions. This was well-intentioned: the idea was to push people to
write their queries in a different, hopefully more performant way.
But as we're moving towards fuller SQL support, it makes more sense to
allow these conditions to go through with the best plan we can come up
with: a cross join followed by a filter. In some cases this will allow
the query to run, and people will be happy with that. In other cases,
it will run into resource limits during execution. But we should at
least give the query a chance.
This patch also updates the documentation to explain how people can
tell whether their queries are being planned this way.
* cartesian is a word.
* Adjust tests.
* Update docs/querying/datasource.md
Co-authored-by: Benedict Jin <asdf2014@apache.org>
---------
Co-authored-by: Benedict Jin <asdf2014@apache.org>
Currently, after an MSQ query, the web console is responsible for waiting for the segments to load. It does so by checking if there are any segments loading into the datasource ingested into, which can cause some issues, like in cases where the segments would never be loaded, or would end up waiting for other ingests as well.
This PR shifts this responsibility to the controller, which would have the list of segments created.
Changes:
- Make ServiceMetricEvent.Builder extend ServiceEventBuilder<ServiceMetricEvent>
and thus convert it to a plain builder rather than a builder of builder.
- Add methods setCreatedTime , setMetricAndValue to the builder
There is a current issue due to inconsistent metadata between worker and controller in MSQ. A controller can receive one set of segments, which are then marked as unused by, say, a compaction job. The worker would be unable to get the segment information as MetadataResource.
Currently, Druid is using Guava 16.0.1 version. This upgrade to 31.1-jre fixes the following issues.
CVE-2018-10237 (Unbounded memory allocation in Google Guava 11.0 through 24.x before 24.1.1 allows remote attackers to conduct denial of service attacks against servers that depend on this library and deserialize attacker-provided data because the AtomicDoubleArray class (when serialized with Java serialization) and the CompoundOrdering class (when serialized with GWT serialization) perform eager allocation without appropriate checks on what a client has sent and whether the data size is reasonable). We don't use Java or GWT serializations. Despite being false positive they're causing red security scans on Druid distribution.
Latest version of google-client-api is incompatible with the existing Guava version. This PR unblocks Update google client apis to latest version #14414
This PR adds a way to store the topic name in a column. Such a column can be used to distinguish messages coming from different topics in multi-topic ingestion.
Motivation:
- There is no usage of the `SegmentTransactionInsertAction` which passes a
non-null non-empty value of `segmentsToBeDropped`.
- This is not really needed either as overshadowed segments are marked as unused
by the Coordinator and need not be done in the same transaction as committing segments.
- It will also help simplify the changes being made in #14407
Changes:
- Remove `segmentsToBeDropped` from the task action and all intermediate methods
- Remove related tests which are not needed anymore
* Add supervisor /resetOffsets API.
- Add a new endpoint /druid/indexer/v1/supervisor/<supervisorId>/resetOffsets
which accepts DataSourceMetadata as a body parameter.
- Update logs, unit tests and docs.
* Add a new interface method for backwards compatibility.
* Rename
* Adjust tests and javadocs.
* Use CoreInjectorBuilder instead of deprecated makeInjectorWithModules
* UT fix
* Doc updates.
* remove extraneous debugging logs.
* Remove the boolean setting; only ResetHandle() and resetInternal()
* Relax constraints and add a new ResetOffsetsNotice; cleanup old logic.
* A separate ResetOffsetsNotice and some cleanup.
* Minor cleanup
* Add a check & test to verify that sequence numbers are only of type SeekableStreamEndSequenceNumbers
* Add unit tests for the no op implementations for test coverage
* CodeQL fix
* checkstyle from merge conflict
* Doc changes
* DOCUSAURUS code tabs fix. Thanks, Brian!
In this PR, I have gotten rid of multiTopic parameter and instead added a topicPattern parameter. Kafka supervisor will pass topicPattern or topic as the stream name to the core ingestion engine. There is validation to ensure that only one of topic or topicPattern will be set. This new setting is easier to understand than overloading the topic field that earlier could be interpreted differently depending on the value of some other field.
This PR adds support to read from multiple Kafka topics in the same supervisor. A multi-topic ingestion can be useful in scenarios where a cluster admin has no control over input streams. Different teams in an org may create different input topics that they can write the data to. However, the cluster admin wants all this data to be queryable in one data source.
* Update to Calcite 1.35.0
* Update from.ftl for Calcite 1.35.0.
* Fixed tests in Calcite upgrade by doing the following:
1. Added a new rule, CoreRules.PROJECT_FILTER_TRANSPOSE_WHOLE_PROJECT_EXPRESSIONS, to Base rules
2. Refactored the CorrelateUnnestRule
3. Updated CorrelateUnnestRel accordingly
4. Fixed a case with selector filters on the left where Calcite was eliding the virtual column
5. Additional test cases for fixes in 2,3,4
6. Update to StringListAggregator to fail a query if separators are not propagated appropriately
* Refactored for testcases to pass after the upgrade, introduced 2 new data sources for handling filters and select projects
* Added a literalSqlAggregator as the upgraded Calcite involved changes to subquery remove rule. This corrected plans for 2 queries with joins and subqueries by replacing an useless literal dimension with a post agg. Additionally a test with COUNT DISTINCT and FILTER which was failing with Calcite 1.21 is added here which passes with 1.35
* Updated to latest avatica and updated code as SqlUnknownTimeStamp is now used in Calcite which needs to be resolved to a timestamp literal
* Added a wrapper segment ref to use for unnest and filter segment reference
The Azure connector is introduced and MSQ's fault tolerance and durable storage can now be used with Microsoft Azure's blob storage. Also, the results of newly introduced queries from deep storage can now store and fetch the results from Azure's blob storage.
* Rolling supervior task publishing
* add an option for number of task groups to roll over
* better
* remove docs
* oops
* checkstyle
* wip test
* undo partial test change
* remove incomplete test
* Minimize PostAggregator computations
Since a change back in 2014, the topN query has been computing
all PostAggregators on all intermediate responses from leaf nodes
to brokers. This generates significant slow downs for queries
with relatively expensive PostAggregators. This change rewrites
the query that is pushed down to only have the minimal set of
PostAggregators such that it is impossible for downstream
processing to do too much work. The final PostAggregators are
applied at the very end.