This commit borrows some test definitions from Drill's test suite
and tries to use them to flesh out the full validation of window
function capbilities.
In order to be able to run these tests, we also add the ability to
run a Scan operation against segments, which also meant an
implementation of RowsAndColumns for frames.
* Changes the get results API in SqlStatementResource to take a page number instead of row/offset.
* Adds "pages" containing information on each page to the results status.
* Update the "numRows" and "sizeInByes" to "numTotalRows" and "totalSizeInBytes" respectively, which are totalled across all pages.
* combine string column implementations
changes:
* generic indexed, front-coded, and auto string columns now all share the same column and index supplier implementations
* remove CachingIndexed implementation, which I think is largely no longer needed by the switch of many things to directly using ByteBuffer, avoiding the cost of creating Strings
* remove ColumnConfig.columnCacheSizeBytes since CachingIndexed was the only user
1) Fix a problem where the fault wasn't reported when the left-hand side
had too many buffered frames. (Instead, frames continued to be buffered,
eventually running the server out of memory.)
2) Always update the mark when rewinding isn't necessary. It fixes a problem where
frames would be needlessly buffered when there isn't a key match across
the two sides.
3) Memory reserved for building the trackers now change based on the heap sized
* Add "stringEncoding" parameter to DataSketches HLL.
Builds on the concept from #11172 and adds a way to feed HLL sketches
with UTF-8 bytes.
This must be an option rather than always-on, because prior to this
patch, HLL sketches used UTF-16LE encoding when hashing strings. To
remain compatible with sketch images created prior to this patch -- which
matters during rolling updates and when reading sketches that have been
written to segments -- we must keep UTF-16LE as the default.
Not currently documented, because I'm not yet sure how best to expose
this functionality to users. I think the first place would be in the SQL
layer: we could have it automatically select UTF-8 or UTF-16LE when
building sketches at query time. We need to be careful about this, though,
because UTF-8 isn't always faster. Sometimes, like for the results of
expressions, UTF-16LE is faster. I expect we will sort this out in
future patches.
* Fix benchmark.
* Fix style issues, improve test coverage.
* Put round back, to make IT updates easier.
* Fix test.
* Fix issue with filtered aggregators and add test.
* Use DS native update(ByteBuffer) method. Improve test coverage.
* Add another suppression.
* Fix ITAutoCompactionTest.
* Update benchmarks.
* Updates.
* Fix conflict.
* Adjustments.
In these other cases, stick to plain "filter". This simplifies lots of
logic downstream, and doesn't hurt since we don't have intervals-specific
optimizations outside of tables.
Fixes an issue where we couldn't properly filter on a column from an
external datasource if it was named __time.
Mocks generally have state and should not be static. In particular, the
"Yielder" included in one of the mocks can only be iterated once, which
made the test suite order-dependent.
* Support complex variance object inputs for variance SQL agg function
* Add test
* Include complexTypeChecker, address PR comments
* Checkstyle, javadoc link
This PR aims to expose a new API called
"@path("/druid/v2/sql/statements/")" which takes the same payload as the current "/druid/v2/sql" endpoint and allows users to fetch results in an async manner.
Adds support for automatic cleaning of a "query-results" directory in durable storage. This directory will be cleaned up only if the task id is not known to the overlord. This will allow the storage of query results after the task has finished running.
Changes:
- Throw an `InsertCannotAllocateSegmentFault` if the allocated segment is not aligned with
the requested granularity.
- Tests to verify new behaviour
* MSQ: Change default clusterStatisticsMergeMode to SEQUENTIAL.
This is an undocumented parameter that controls how cluster-by statistics
are merged. In PARALLEL mode, statistics are gathered from workers all
at once. In SEQUENTIAL mode, statistics are gathered time chunk by time
chunk. This improves accuracy for jobs with many time chunks, and reduces
memory usage.
The main downside of SEQUENTIAL is that it can take longer, but in most
situations I've seen, PARALLEL is only really usable in cases where the
sketches are small enough that SEQUENTIAL would also run relatively
quickly. So it seems like SEQUENTIAL is a better default.
* Switch off-test from SEQUENTIAL to PARALLEL.
* Fix sequential merge for situations where there are no time chunks at all.
* Add a couple more tests.
Users can now add a guardrail to prevent subquery’s results from exceeding the set number of bytes by setting druid.server.http.maxSubqueryRows in Broker's config or maxSubqueryRows in the query context. This feature is experimental for now and would default back to row-based limiting in case it fails to get the accurate size of the results consumed by the query.
* SQL OperatorConversions: Introduce.aggregatorBuilder, allow CAST-as-literal.
Four main changes:
1) Provide aggregatorBuilder, a more consistent way of defining the
SqlAggFunction we need for all of our SQL aggregators. The mechanism
is analogous to the one we already use for SQL functions
(OperatorConversions.operatorBuilder).
2) Allow CASTs of constants to be considered as "literalOperands". This
fixes an issue where various of our operators are defined with
OperandTypes.LITERAL as part of their checkers, which doesn't allow
casts. However, in these cases we generally _do_ want to allow casts.
The important piece is that the value must be reducible to a constant,
not that the SQL text is literally a literal.
3) Update DataSketches SQL aggregators to use the new aggregatorBuilder
functionality. The main user-visible effect here is [2]: the aggregators
would now accept, for example, "CAST(0.99 AS DOUBLE)" as a literal
argument. Other aggregators could be updated in a future patch.
4) Rename "requiredOperands" to "requiredOperandCount", because the
old name was confusing. (It rhymes with "literalOperands" but the
arguments mean different things.)
* Adjust method calls.
* S3: Attach SSE key to doesObjectExist calls.
We did not previously attach the SSE key to the doesObjectExist request,
leading to an inconsistency that may cause problems on "S3-compatible"
implementations. This patch implements doesObjectExist using similar
logic to the S3 client itself, but calls our implementation of
getObjectMetadata rather than the S3 client's, ensuring the request
is decorated with the SSE key.
* Fix tests.
* Fix compatibility issue with SqlTaskResource
The DruidException changes broke the response format
for errors coming back from the SqlTaskResource, so fix those
Introduce DruidException, an exception whose goal in life is to be delivered to a user.
DruidException itself has javadoc on it to describe how it should be used. This commit both introduces the Exception and adjusts some of the places that are generating exceptions to generate DruidException objects instead, as a way to show how the Exception should be used.
This work was a 3rd iteration on top of work that was started by Paul Rogers. I don't know if his name will survive the squash-and-merge, so I'm calling it out here and thanking him for starting on this.
* Throw ValidationException if CLUSTERED BY column descending order is specified.
- Fails query planning
* Some more tests.
* fixup existing comment
* Update comment
* checkstyle fix: remove unused imports
* Remove InsertCannotOrderByDescendingFault and deprecate the fault in readme.
* move deprecated field to the bottom
They were not previously loaded because supportsQueries was false.
This patch sets supportsQueries to true, and clarifies in Task
javadocs that supportsQueries can be true for tasks that aren't
directly queryable over HTTP.
* Limit select results in MSQ
* reduce number of files in test
* add truncated flag
* avoid materializing select results to list, use iterable instead
* javadocs
* fix kafka input format reader schema discovery and partial schema discovery to actually work right, by re-using dimension filtering logic of MapInputRowParser
Changes
- Add a `DruidException` which contains a user-facing error message, HTTP response code
- Make `EntryExistsException` extend `DruidException`
- If metadata store max_allowed_packet limit is violated while inserting a new task, throw
`DruidException` with response code 400 (bad request) to prevent retries
- Add `SQLMetadataConnector.isRootCausePacketTooBigException` with impl for MySQL
* Fix EarliestLatestBySqlAggregator signature; Include function name for all signatures.
* Single quote function signatures, space between args and remove \n.
* fixup UT assertion
The same aggregator can have two output names for a SQL like:
INSERT INTO foo
SELECT x, COUNT(*) AS y, COUNT(*) AS z
FROM t
GROUP BY 1
PARTITIONED BY ALL
In this case, the SQL planner will create a query with a single "count"
aggregator mapped to output names "y" and "z". The prior MSQ code did
not properly handle this case, instead throwing an error like:
Expected single output for query column[a0] but got [[1, 2]]
It was found that several supported tasks / input sources did not have implementations for the methods used by the input source security feature, causing these tasks and input sources to fail when used with this feature. This pr adds the needed missing implementations. Also securing the sampling endpoint with input source security, when enabled.
### Description
This change allows for consideration of the input format and compression when computing how to split the input files among available tasks, in MSQ ingestion, when considering the value of the `maxInputBytesPerWorker` query context parameter. This query parameter allows users to control the maximum number of bytes, with granularity of input file / object, that ingestion tasks will be assigned to ingest. With this change, this context parameter now denotes the estimated weighted size in bytes of the input to split on, with consideration for input format and compression format, rather than the actual file size, reported by the file system. We assume uncompressed newline delimited json as a baseline, with scaling factor of `1`. This means that when computing the byte weight that a file has towards the input splitting, we take the file size as is, if uncompressed json, 1:1. It was found during testing that gzip compressed json, and parquet, has scale factors of `4` and `8` respectively, meaning that each byte of data is weighted 4x and 8x respectively, when computing input splits. This weighted byte scaling is only considered for MSQ ingestion that uses either LocalInputSource or CloudObjectInputSource at the moment. The default value of the `maxInputBytesPerWorker` query context parameter has been updated from 10 GiB, to 512 MiB
* Be able to load segments on Peons
This change introduces a new config on WorkerConfig
that indicates how many bytes of each storage
location to use for storage of a task. Said config
is divided up amongst the locations and slots
and then used to set TaskConfig.tmpStorageBytesPerTask
The Peons use their local task dir and
tmpStorageBytesPerTask as their StorageLocations for
the SegmentManager such that they can accept broadcast
segments.
Changes:
- Replace `OverlordHelper` with `OverlordDuty` to align with `CoordinatorDuty`
- Each duty has a `run()` method and defines a `Schedule` with an initial delay and period.
- Update existing duties `TaskLogAutoCleaner` and `DurableStorageCleaner`
- Add utility class `Configs`
- Update log, error messages and javadocs
- Other minor style improvements
In StreamChunkParser#parseWithInputFormat, we call byteEntityReader.read() without handling a potential ParseException, which is thrown during this function call by the delegate AvroStreamReader#intermediateRowIterator.
A ParseException can be thrown if an Avro stream has corrupt data or data that doesn't conform to the schema specified or for other decoding reasons. This exception if uncaught, can cause ingestion to fail.
This PR fixes an issue when using 'auto' encoded LONG typed columns and the 'vectorized' query engine. These columns use a delta based bit-packing mechanism, and errors in the vectorized reader would cause it to incorrectly read column values for some bit sizes (1 through 32 bits). This is a regression caused by #11004, which added the optimized readers to improve performance, so impacts Druid versions 0.22.0+.
While writing the test I finally got sad enough about IndexSpec not having a "builder", so I made one, and switched all the things to use it. Apologies for the noise in this bug fix PR, the only real changes are in VSizeLongSerde, and the tests that have been modified to cover the buggy behavior, VSizeLongSerdeTest and ExpressionVectorSelectorsTest. Everything else is just cleanup of IndexSpec usage.
* Make LoggingEmitter more useful
* Skip code coverage for facade classes
* fix spellcheck
* code review
* fix dependency
* logging.md
* fix checkstyle
* Add back jacoco version to main pom
* If a worker dies after it has finished generating results, MSQ decides to not retry it as it has no active work orders. However, since we don't keep track of it further, if it is required for a future stage, the controller hangs waiting for the worker to be ready. This PR keeps tracks of any workers the controller decides to not restart immediately and while starting workers for the next stage, queues these workers for retry.
* fix typo in s3 docs. add readme to s3 module.
* Update extensions-core/s3-extensions/README.md
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
* cleanup readme for s3 extension and link to repo markdown doc instead of web docs
---------
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
Hadoop 2 often causes red security scans on Druid distribution because of the dependencies it brings. We want to move away from Hadoop 2 and provide Hadoop 3 distribution available. Switch druid to building with Hadoop 3 by default. Druid will still be compatible with Hadoop 2 and users can build hadoop-2 compatible distribution using hadoop2 profile.
* Fix two concurrency issues with segment fetching.
1) SegmentLocalCacheManager: Fix a concurrency issue where certain directory
cleanup happened outside of directoryWriteRemoveLock. This created the
possibility that segments would be deleted by one thread, while being
actively downloaded by another thread.
2) TaskDataSegmentProcessor (MSQ): Fix a concurrency issue when two stages
in the same process both use the same segment. For example: a self-join
using distributed sort-merge. Prior to this change, the two stages could
delete each others' segments.
3) ReferenceCountingResourceHolder: increment() returns a new ResourceHolder,
rather than a Releaser. This allows it to be passed to callers without them
having to hold on to both the original ResourceHolder *and* a Releaser.
4) Simplify various interfaces and implementations by using ResourceHolder
instead of Pair and instead of split-up fields.
* Add test.
* Fix style.
* Remove Releaser.
* Updates from master.
* Add some GuardedBys.
* Use the correct GuardedBy.
* Adjustments.
* MSQ: Subclass CalciteJoinQueryTest, other supporting changes.
The main change is the new tests: we now subclass CalciteJoinQueryTest
in CalciteSelectJoinQueryMSQTest twice, once for Broadcast and once for
SortMerge.
Two supporting production changes for default-value mode:
1) InputNumberDataSource is marked as concrete, to allow leftFilter to
be pushed down to it.
2) In default-value mode, numeric frame field readers can now return nulls.
This is necessary when stacking joins on top of joins: nulls must be
preserved for semantics that match broadcast joins and native queries.
3) In default-value mode, StringFieldReader.isNull returns true on empty
strings in addition to nulls. This is more consistent with the behavior
of the selectors, which map empty strings to null as well in that mode.
As an effect of change (2), the InsertTimeNull change from #14020 (to
replace null timestamps with default timestamps) is reverted. IMO, this
is fine, as either behavior is defensible, and the change from #14020
hasn't been released yet.
* Adjust tests.
* Style fix.
* Additional tests.
When ingesting from an external source which already contains a column "__time", currently, the value is dropped. Changing the time column name in the external input slice reader resolves this.
* return task status reported by peon
* Write TaskStatus to file in AbstractTask.cleanUp
* Get TaskStatus from task log
* Fix merge conflicts in AbstractTaskTest
* Add unit tests for TaskLogPusher, TaskLogStreamer, NoopTaskLogs to satisfy code coverage
* Add license headerss
* Fix style
* Remove unknown exception declarations
### Description
This pr fixes a few bugs found with the inputSource security feature.
1. `KillUnusedSegmentsTask` previously had no definition for the `getInputSourceResources`, which caused an unsupportedOperationException to be thrown when this task type was submitted with the inputSource security feature enabled. This task type should not require any input source specific resources, so returning an empty set for this task type now.
2. Fixed a bug where when the input source type security feature is enabled, all of the input source type specific resources used where authenticated against:
`{"resource": {"name": "EXTERNAL", "type": "{INPUT_SOURCE_TYPE}"}, "action": "READ"}`
When they should be instead authenticated against:
`{"resource": {"name": "{INPUT_SOURCE_TYPE}", "type": "EXTERNAL"}, "action": "READ"}`
3. fixed bug where supervisor tasks were not authenticated against the specific input source types used, if input source security feature was enabled.
*
Adds new run time parameter druid.indexer.task.tmpStorageBytesPerTask. This sets a limit for the amount of temporary storage disk space used by tasks. This limit is currently only respected by MSQ tasks.
* Removes query context parameters intermediateSuperSorterStorageMaxLocalBytes and composedIntermediateSuperSorterStorageEnabled. Composed intermediate super sorter (which was enabled by composedIntermediateSuperSorterStorageEnabled) is now enabled automatically if durableShuffleStorage is set to true. intermediateSuperSorterStorageMaxLocalBytes is calculated from the limit set by the run time parameter druid.indexer.task.tmpStorageBytesPerTask.
* "maxResultsSize" has been removed from the S3OutputConfig and a default "chunkSize" of 100MiB is now present. This change primarily affects users who wish to use durable storage for MSQ jobs.
* MSQ: Use the same result coercion routines as the regular SQL endpoint.
The main changes are to move NativeQueryMaker.coerce to SqlResults, and
to formally make the list of sqlTypeNames from the MSQ results reports
use SqlTypeNames.
- Change the default to MSQ-compatible rather than MSQ-incompatible.
The explicit marker function is now "notMsqCompatible()".
* MSQ: Support for querying lookup and inline data directly.
Main changes:
1) Add of LookupInputSpec and DataSourcePlan.forLookup.
2) Add InlineInputSpec, and modify of DataSourcePlan.forInline to use
this instead of an ExternalInputSpec with JSON. This allows the inline
data to act as the right-hand side of a join, if needed.
Supporting changes:
1) Modify JoinDataSource's leftFilter validation to be a little less
strict: it's now OK with leftFilter being attached to any concrete
leaf (no children) datasource, rather than requiring it be a table.
This allows MSQ to create JoinDataSource with InputNumberDataSource
as the base.
2) Add SegmentWranglerModule to CliIndexer, CliPeon. This allows them to
query lookups and inline data directly.
* Updates based on CI.
* Additional tests.
* Style fix.
* Remove unused import.
The GCP initialization pulls credentials for
talking to GCP. We want that to only happen
when fully required and thus want the GCP-related
objects lazily instantiated.
* MSQ: Support multiple result columns with the same name.
This is allowed in SQL, and is supported by the regular SQL endpoint.
We retain a validation that INSERT ... SELECT does not allow multiple
columns with the same name, because column names in segments must be
unique.
### Description
Previously msq controller and worker tasks did not have implementations for the `getInputSourceResources()` method. This causes the submission of these tasks to fail if the following auth config is enabled:
`druid.auth.enableInputSourceSecurity=true`
Added implementations of this method for these tasks that return an empty set of input sources. This means that for these task types, if `druid.auth.enableInputSourceSecurity=true` config is used, the input source types will be properly computed and authorized in the SQL layer, but not if the equivalent controller / worker tasks are submitted to the task endpoint.
### Description
This change allows for input sources used during MSQ ingestion to be authorized for multiple input source types, instead of just 1. Such an input source that allows for multiple types is the CombiningInputSource.
Also fixed bug that caused some input source specific functions to be authorized against the permissions
`
[
new ResourceAction(new Resource(ResourceType.EXTERNAL, ResourceType.EXTERNAL), Action.READ),
new ResourceAction(new Resource(ResourceType.EXTERNAL, {input_source_type}), Action.READ)
]
`
when the inputSource based authorization feature is enabled, when it should instead be authorized against
`
[
new ResourceAction(new Resource(ResourceType.EXTERNAL, {input_source_type}), Action.READ)
]
`
* Frames: Ensure nulls are read as default values when appropriate.
Fixes a bug where LongFieldWriter didn't write a properly transformed
zero when writing out a null. This had no meaningful effect in SQL-compatible
null handling mode, because the field would get treated as a null anyway.
But it does have an effect in default-value mode: it would cause Long.MIN_VALUE
to get read out instead of zero.
Also adds NullHandling checks to the various frame-based column selectors,
allowing reading of nullable frames by servers in default-value mode.
Fixes#13837.
### Description
This change allows for input source type security in the native task layer.
To enable this feature, the user must set the following property to true:
`druid.auth.enableInputSourceSecurity=true`
The default value for this property is false, which will continue the existing functionality of needing authorization to write to the respective datasource.
When this config is enabled, the users will be required to be authorized for the following resource action, in addition to write permission on the respective datasource.
`new ResourceAction(new Resource(ResourceType.EXTERNAL, {INPUT_SOURCE_TYPE}, Action.READ`
where `{INPUT_SOURCE_TYPE}` is the type of the input source being used;, http, inline, s3, etc..
Only tasks that provide a non-default implementation of the `getInputSourceResources` method can be submitted when config `druid.auth.enableInputSourceSecurity=true` is set. Otherwise, a 400 error will be thrown.
* Always use file sizes when determining batch ingest splits.
Main changes:
1) Update CloudObjectInputSource and its subclasses (S3, GCS,
Azure, Aliyun OSS) to use SplitHintSpecs in all cases. Previously, they
were only used for prefixes, not uris or objects.
2) Update ExternalInputSpecSlicer (MSQ) to consider file size. Previously,
file size was ignored; all files were treated as equal weight when
determining splits.
A side effect of these changes is that we'll make additional network
calls to find the sizes of objects when users specify URIs or objects
as opposed to prefixes. IMO, this is worth it because it's the only way
to respect the user's split hint and task assignment settings.
Secondary changes:
1) S3, Aliyun OSS: Use getObjectMetadata instead of listObjects to get
metadata for a single object. This is a simpler call that is also
expected to be less expensive.
2) Azure: Fix a bug where getBlobLength did not populate blob
reference attributes, and therefore would not actually retrieve the
blob length.
3) MSQ: Align dynamic slicing logic between ExternalInputSpecSlicer and
TableInputSpecSlicer.
4) MSQ: Adjust WorkerInputs to ensure there is always at least one
worker, even if it has a nil slice.
* Add msqCompatible to testGroupByWithImpossibleTimeFilter.
* Fix tests.
* Add additional tests.
* Remove unused stuff.
* Remove more unused stuff.
* Adjust thresholds.
* Remove irrelevant test.
* Fix comments.
* Fix bug.
* Updates.
* Add a new fault "QueryRuntimeError" to MSQ engine to capture native query errors.
* Fixed bug in MSQ fault tolerance where worker were being retried if `UnexpectedMultiValueDimensionException` was thrown.
* An exception from the query runtime with `org.apache.druid.query` as the package name is thrown as a QueryRuntimeError
changes:
* introduce ColumnFormat to separate physical storage format from logical type. ColumnFormat is now used instead of ColumnCapabilities to get column handlers for segment creation
* introduce new 'auto' type indexer and merger which produces a new common nested format of columns, which is the next logical iteration of the nested column stuff. Essentially this is an automatic type column indexer that produces the most appropriate column for the given inputs, making either STRING, ARRAY<STRING>, LONG, ARRAY<LONG>, DOUBLE, ARRAY<DOUBLE>, or COMPLEX<json>.
* revert NestedDataColumnIndexer, NestedDataColumnMerger, NestedDataColumnSerializer to their version pre #13803 behavior (v4) for backwards compatibility
* fix a bug in RoaringBitmapSerdeFactory if anything actually ever wrote out an empty bitmap using toBytes and then later tried to read it (the nerve!)
This change introduces the concept of input source type security model, proposed in #13837.. With this change, this feature is only available at the SQL layer, but we will expand to native layer in a follow up PR.
To enable this feature, the user must set the following property to true:
druid.auth.enableInputSourceSecurity=true
The default value for this property is false, which will continue the existing functionality of having the usage all external sources being authorized against the hardcoded resource action
new ResourceAction(new Resource(ResourceType.EXTERNAL, ResourceType.EXTERNAL), Action.READ
When this config is enabled, the users will be required to be authorized for the following resource action
new ResourceAction(new Resource(ResourceType.EXTERNAL, {INPUT_SOURCE_TYPE}, Action.READ
where {INPUT_SOURCE_TYPE} is the type of the input source being used;, http, inline, s3, etc..
Documentation has not been added for the feature as it is not complete at the moment, as we still need to enable this for the native layer in a follow up pr.
This PR is a follow-up to #13819 so that the Tuple sketch functionality can be used in SQL for both ingestion using Multi-Stage Queries (MSQ) and also for analytic queries against Tuple sketch columns.
* Reworking s3 connector with
1. Adding retries
2. Adding max fetch size
3. Using s3Utils for most of the api's
4. Fixing bugs in DurableStorageCleaner
5. Moving to Iterator for listDir call
array columns!
changes:
* add support for storing nested arrays of string, long, and double values as specialized nested columns instead of breaking them into separate element columns
* nested column type mimic behavior means that columns ingested with only root arrays of primitive values will be ARRAY typed columns
* neat test refactor stuff
* add v4 segment test
* add array element indexes
* add tests for unnest and array columns
* fix unnest column value selector cursor handling of null and empty arrays
Expands the OIDC based auth in Druid by adding a JWT Authenticator that validates ID Tokens associated with a request. The existing pac4j authenticator works for authenticating web users while accessing the console, whereas this authenticator is for validating Druid API requests made by Direct clients. Services already supporting OIDC can attach their ID tokens to the Druid requests
under the Authorization request header.
* Add segment generator counters to reports
* Remove unneeded annotation
* Fix checkstyle and coverage
* Add persist and merged as new metrics
* Address review comments
* Fix checkstyle
* Create metrics class to handle updating counters
* Address review comments
* Add rowsPushed as a new metrics
changes:
* fixes inconsistent handling of byte[] values between ExprEval.bestEffortOf and ExprEval.ofType, which could cause byte[] values to end up as java toString values instead of base64 encoded strings in ingest time transforms
* improved ExpressionTransform binding to re-use ExprEval.bestEffortOf when evaluating a binding instead of throwing it away
* improved ExpressionTransform array handling, added RowFunction.evalDimension that returns List<String> to back Row.getDimension and remove the automatic coercing of array types that would typically happen to expression transforms unless using Row.getDimension
* added some tests for ExpressionTransform with array inputs
* improved ExpressionPostAggregator to use partial type information from decoration
* migrate some test uses of InputBindings.forMap to use other methods
* Lower default maxRowsInMemory for realtime ingestion.
The thinking here is that for best ingestion throughput, we want
intermediate persists to be as big as possible without using up all
available memory. So, we rely mainly on maxBytesInMemory. The default
maxRowsInMemory (1 million) is really just a safety: in case we have
a large number of very small rows, we don't want to get overwhelmed
by per-row overheads.
However, maximum ingestion throughput isn't necessarily the primary
goal for realtime ingestion. Query performance is also important. And
because query performance is not as good on the in-memory dataset, it's
helpful to keep it from growing too large. 150k seems like a reasonable
balance here. It means that for a typical 5 million row segment, we
won't trigger more than 33 persists due to this limit, which is a
reasonable number of persists.
* Update tests.
* Update server/src/main/java/org/apache/druid/segment/indexing/RealtimeTuningConfig.java
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* Fix test.
* Fix link.
---------
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* Removing intermediateSuperSorterStorageMaxLocalBytes, maxInputBytesPerWorker, composedIntermediateSuperSorterStorageEnabled, clusterStatisticsMergeMode from docs
* Adding documentation in the context class.
* Various changes and fixes to UNNEST.
Native changes:
1) UnnestDataSource: Replace "column" and "outputName" with "virtualColumn".
This enables pushing expressions into the datasource. This in turn
allows us to do the next thing...
2) UnnestStorageAdapter: Logically apply query-level filters and virtual
columns after the unnest operation. (Physically, filters are pulled up,
when possible.) This is beneficial because it allows filters and
virtual columns to reference the unnested column, and because it is
consistent with how the join datasource works.
3) Various documentation updates, including declaring "unnest" as an
experimental feature for now.
SQL changes:
1) Rename DruidUnnestRel (& Rule) to DruidUnnestRel (& Rule). The rel
is simplified: it only handles the UNNEST part of a correlated join.
Constant UNNESTs are handled with regular inline rels.
2) Rework DruidCorrelateUnnestRule to focus on pulling Projects from
the left side up above the Correlate. New test testUnnestTwice verifies
that this works even when two UNNESTs are stacked on the same table.
3) Include ProjectCorrelateTransposeRule from Calcite to encourage
pushing mappings down below the left-hand side of the Correlate.
4) Add a new CorrelateFilterLTransposeRule and CorrelateFilterRTransposeRule
to handle pulling Filters up above the Correlate. New tests
testUnnestWithFiltersOutside and testUnnestTwiceWithFilters verify
this behavior.
5) Require a context feature flag for SQL UNNEST, since it's undocumented.
As part of this, also cleaned up how we handle feature flags in SQL.
They're now hooked into EngineFeatures, which is useful because not
all engines support all features.
* Sort-merge join and hash shuffles for MSQ.
The main changes are in the processing, multi-stage-query, and sql modules.
processing module:
1) Rename SortColumn to KeyColumn, replace boolean descending with KeyOrder.
This makes it nicer to model hash keys, which use KeyOrder.NONE.
2) Add nullability checkers to the FieldReader interface, and an
"isPartiallyNullKey" method to FrameComparisonWidget. The join
processor uses this to detect null keys.
3) Add WritableFrameChannel.isClosed and OutputChannel.isReadableChannelReady
so callers can tell which OutputChannels are ready for reading and which
aren't.
4) Specialize FrameProcessors.makeCursor to return FrameCursor, a random-access
implementation. The join processor uses this to rewind when it needs to
replay a set of rows with a particular key.
5) Add MemoryAllocatorFactory, which is embedded inside FrameWriterFactory
instead of a particular MemoryAllocator. This allows FrameWriterFactory
to be shared in more scenarios.
multi-stage-query module:
1) ShuffleSpec: Add hash-based shuffles. New enum ShuffleKind helps callers
figure out what kind of shuffle is happening. The change from SortColumn
to KeyColumn allows ClusterBy to be used for both hash-based and sort-based
shuffling.
2) WorkerImpl: Add ability to handle hash-based shuffles. Refactor the logic
to be more readable by moving the work-order-running code to the inner
class RunWorkOrder, and the shuffle-pipeline-building code to the inner
class ShufflePipelineBuilder.
3) Add SortMergeJoinFrameProcessor and factory.
4) WorkerMemoryParameters: Adjust logic to reserve space for output frames
for hash partitioning. (We need one frame per partition.)
sql module:
1) Add sqlJoinAlgorithm context parameter; can be "broadcast" or
"sortMerge". With native, it must always be "broadcast", or it's a
validation error. MSQ supports both. Default is "broadcast" in
both engines.
2) Validate that MSQs do not use broadcast join with RIGHT or FULL join,
as results are not correct for broadcast join with those types. Allow
this in native for two reasons: legacy (the docs caution against it,
but it's always been allowed), and the fact that it actually *does*
generate correct results in native when the join is processed on the
Broker. It is much less likely that MSQ will plan in such a way that
generates correct results.
3) Remove subquery penalty in DruidJoinQueryRel when using sort-merge
join, because subqueries are always required, so there's no reason
to penalize them.
4) Move previously-disabled join reordering and manipulation rules to
FANCY_JOIN_RULES, and enable them when using sort-merge join. Helps
get to better plans where projections and filters are pushed down.
* Work around compiler problem.
* Updates from static analysis.
* Fix @param tag.
* Fix declared exception.
* Fix spelling.
* Minor adjustments.
* wip
* Merge fixups
* fixes
* Fix CalciteSelectQueryMSQTest
* Empty keys are sortable.
* Address comments from code review. Rename mux -> mix.
* Restore inspection config.
* Restore original doc.
* Reorder imports.
* Adjustments
* Fix.
* Fix imports.
* Adjustments from review.
* Update header.
* Adjust docs.
You can now do the following operations with TupleSketches in Post Aggregation Step
Get the Sketch Output as Base64 String
Provide a constant Tuple Sketch in post-aggregation step that can be used in Set Operations
Get the Estimated Value(Sum) of Summary/Metrics Objects associated with Tuple Sketch
The FiniteFirehoseFactory and InputRowParser classes were deprecated in 0.17.0 (#8823) in favor of InputSource & InputFormat. This PR removes the FiniteFirehoseFactory and all its implementations along with classes solely used by them like Fetcher (Used by PrefetchableTextFilesFirehoseFactory). Refactors classes including tests using FiniteFirehoseFactory to use InputSource instead.
Removing InputRowParser may not be as trivial as many classes that aren't deprecated depends on it (with no alternatives), like EventReceiverFirehoseFactory. Hence FirehoseFactory, EventReceiverFirehoseFactory, and Firehose are marked deprecated.
*When running REPLACE queries, the segments which contain no data are dropped (marked as unused). This PR aims to generate tombstones in place of segments which contain no data to mark their deletion, as is the behavior with the native ingestion.
This will cause InsertCannotReplaceExistingSegmentFault to be removed since it was generated if the interval to be marked unused didn't fully overlap one of the existing segments to replace.
* Fix NPE in KinesisSupervisor#setupRecordSupplier.
PR #13539 refactored record supplier creation and introduced a bug:
this method would throw NPE when recordsPerFetch was not provided
by the user. recordsPerFetch isn't needed in this context at all,
since the supervisor-side supplier doesn't fetch records. So this
patch sets it to zero.
* Remove unused imports.
If the intermediate handoff period is less than the task duration and there is no new data in the input topic, task will continuously checkpoint the same offsets again and again. This PR fixes that bug by resetting the checkpoint time even when the task receives the same end offset request again.
* merge druid-core, extendedset, and druid-hll into druid-processing to simplify everything
* fix poms and license stuff
* mockito is evil
* allow reset of JvmUtils RuntimeInfo if tests used static injection to override
* Use an HllSketchHolder object to enable optimized merge
HllSketchAggregatorFactory.combine had been implemented using a
pure pair-wise, "make a union -> add 2 things to union -> get sketch"
algorithm. This algorithm does 2 things that was CPU
1) The Union object always builds an HLL_8 sketch regardless of the
target type. This means that when the target type is not HLL_8, we
spent CPU cycles converting to HLL_8 and back over and over again
2) By throwing away the Union object and converting back to the
HllSketch only to build another Union object, we do lots and lots
of copy+conversions of the HllSketch
This change introduces an HllSketchHolder object which can hold onto
a Union object and delay conversion back into an HllSketch until
it is actually needed. This follows the same pattern as the
SketchHolder object for theta sketches.
changes:
* modified druid schema column type compution to special case COMPLEX<json> handling to choose COMPLEX<json> if any column in any segment is COMPLEX<json>
* NestedFieldVirtualColumn can now work correctly on any type of column, returning either a column selector if a root path, or nil selector if not
* fixed a random bug with NilVectorSelector when using a vector size larger than the default and druid.generic.useDefaultValueForNull=false would have the nulls vector set to all false instead of true
* fixed an overly aggressive check in ExprEval.ofType when handling complex types which would try to treat any string as base64 without gracefully falling back if it was not in fact base64 encoded, along with special handling for complex<json>
* added ExpressionVectorSelectors.castValueSelectorToObject and ExpressionVectorSelectors.castObjectSelectorToNumeric as convience methods to cast vector selectors using cast expressions without the trouble of constructing an expression. the polymorphic nature of the non-vectorized engine (and significantly larger overhead of non-vectorized expression processing) made adding similar methods for non-vectorized selectors less attractive and so have not been added at this time
* fix inconsistency between nested column indexer and serializer in handling values (coerce non primitive and non arrays of primitives using asString)
* ExprEval best effort mode now handles byte[] as string
* added test for ExprEval.bestEffortOf, and add missing conversion cases that tests uncovered
* more tests more better
* Fallback virtual column
This virtual columns enables falling back to another column if
the original column doesn't exist. This is useful when doing
column migrations and you have some old data with column X,
new data with column Y and you want to use Y if it exists, X
otherwise so that you can run a consistent query against all of
the data.
With fault tolerance enabled in MSQ, not all the work orders might be populated if the worker is restarted. In case it gets the request for cleaning up the stage which is not present in the worker's map, it can throw an NPE. Added a check to ensure that the stage is present in the map before cleaning it up, or else logging it as a warning.
* SQL test framework extensions
* Capture planner artifacts: logical plan, etc.
* Planner test builder validates the logical plan
* Validation for the SQL resut schema (we already have
validation for the Druid row signature)
* Better Guice integration: properties, reuse Guice modules
* Avoid need for hand-coded expr, macro tables
* Retire some of the test-specific query component creation
* Fix query log hook race condition
Co-authored-by: Paul Rogers <progers@apache.org>
* discover nested columns when using nested column indexer for schemaless
* move useNestedColumnIndexerForSchemaDiscovery from AppendableIndexSpec to DimensionsSpec
Much improved table functions
* Revises properties, definitions in the catalog
* Adds a "table function" abstraction to model such functions
* Specific functions for HTTP, inline, local and S3.
* Extended SQL types in the catalog
* Restructure external table definitions to use table functions
* EXTEND syntax for Druid's extern table function
* Support for array-valued table function parameters
* Support for array-valued SQL query parameters
* Much new documentation
* Kinesis: More robust default fetch settings.
1) Default recordsPerFetch and recordBufferSize based on available memory
rather than using hardcoded numbers. For this, we need an estimate
of record size. Use 10 KB for regular records and 1 MB for aggregated
records. With 1 GB heaps, 2 processors per task, and nonaggregated
records, recordBufferSize comes out to the same as the old
default (10000), and recordsPerFetch comes out slightly lower (1250
instead of 4000).
2) Default maxRecordsPerPoll based on whether records are aggregated
or not (100 if not aggregated, 1 if aggregated). Prior default was 100.
3) Default fetchThreads based on processors divided by task count on
Indexers, rather than overall processor count.
4) Additionally clean up the serialized JSON a bit by adding various
JsonInclude annotations.
* Updates for tests.
* Additional important verify.
* Quote and escape table, key and column names.
* fix typo.
* More select statements.
* Derby lookup tests create quoted identifiers so it's compatible.
* Use Stringutils.replace() utility.
* quote the filter string.
* Squish doubly quote usage into a single function.
* Add parameterized test with reserved identifiers.
* few changes.
* Addition of NaiveSortMaker and Default implementation
Add the NaiveSortMaker which makes a sorter
object and a default implementation of the
interface.
This also allows us to plan multiple different window
definitions on the same query.
* Validate response headers and fix exception logging
A class of QueryException were throwing away their
causes making it really hard to determine what's
going wrong when something goes wrong in the SQL
planner specifically. Fix that and adjust tests
to do more validation of response headers as well.
We allow 404s and 307s to be returned even without
authorization validated, but others get converted to 403
This PR expands `StringDimensionIndexer` to handle conversion of `byte[]` to base64 encoded strings, rather than the current behavior of calling java `toString`.
This issue was uncovered by a regression of sorts introduced by #13519, which updated the protobuf extension to directly convert stuff to java types, resulting in `bytes` typed values being converted as `byte[]` instead of a base64 string which the previous JSON based conversion created. While outputting `byte[]` is more consistent with other input formats, and preferable when the bytes can be consumed directly (such as complex types serde), when fed to a `StringDimensionIndexer`, it resulted in an ugly java `toString` because `processRowValsToUnsortedEncodedKeyComponent` is fed the output of `row.getRaw(..)`. Converting `byte[]` to a base64 string within `StringDimensionIndexer` is consistent with the behavior of calling `row.getDimension(..)` which does do this coercion (and why many tests on binary types appeared to be doing the expected thing).
I added some protobuf `bytes` tests, but they don't really hit the new `StringDimensionIndexer` behavior because they operate on the `InputRow` directly, and call `getDimension` to validate stuff. The parser based version still uses the old conversion mechanisms, so when not using a flattener incorrectly calls `toString` on the `ByteString`. I have encoded this behavior in the test for now, if we either update the parser to use the new flattener or just .. remove parsers we can remove this test stuff.