Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
Co-authored-by: Victoria Lim <lim.t.victoria@gmail.com>
* use new sampler features
* supprot kafka format
* update DQT, fix tests
* prefer non numeric formats
* fix input format step
* boost SQL data loader
* delete dimension in auto discover mode
* inline example specs
* feedback updates
* yeet the format into valueFormat when switching to kafka
* kafka format is now a toggle
* even better form layout
* rename
* Various documentation updates.
1) Split out "data management" from "ingestion". Break it into thematic pages.
2) Move "SQL-based ingestion" into the Ingestion category. Adjust content so
all conceptual content is in concepts.md and all syntax content is in reference.md.
Shorten the known issues page to the most interesting ones.
3) Add SQL-based ingestion to the ingestion method comparison page. Remove the
index task, since index_parallel is just as good when maxNumConcurrentSubTasks: 1.
4) Rename various mentions of "Druid console" to "web console".
5) Add additional information to ingestion/partitioning.md.
6) Remove a mention of Tranquility.
7) Remove a note about upgrading to Druid 0.10.1.
8) Remove no-longer-relevant task types from ingestion/tasks.md.
9) Move ingestion/native-batch-firehose.md to the hidden section. It was previously deprecated.
10) Move ingestion/native-batch-simple-task.md to the hidden section. It is still linked in some
places, but it isn't very useful compared to index_parallel, so it shouldn't take up space
in the sidebar.
11) Make all br tags self-closing.
12) Certain other cosmetic changes.
13) Update to node-sass 7.
* make travis use node12 for docs
Co-authored-by: Vadim Ogievetsky <vadim@ogievetsky.com>
### Description
Today we ingest a number of high cardinality metrics into Druid across dimensions. These metrics are rolled up on a per minute basis, and are very useful when looking at metrics on a partition or client basis. Events is another class of data that provides useful information about a particular incident/scenario inside a Kafka cluster. Events themselves are carried inside kafka payload, but nonetheless there are some very useful metadata that is carried in kafka headers that can serve as useful dimension for aggregation and in turn bringing better insights.
PR(https://github.com/apache/druid/pull/10730) introduced support of Kafka headers in InputFormats.
We still need an input format to parse out the headers and translate those into relevant columns in Druid. Until that’s implemented, none of the information available in the Kafka message headers would be exposed. So first there is a need to write an input format that can parse headers in any given format(provided we support the format) like we parse payloads today. Apart from headers there is also some useful information present in the key portion of the kafka record. We also need a way to expose the data present in the key as druid columns. We need a generic way to express at configuration time what attributes from headers, key and payload need to be ingested into druid. We need to keep the design generic enough so that users can specify different parsers for headers, key and payload.
This PR is designed to solve the above by providing wrapper around any existing input formats and merging the data into a single unified Druid row.
Lets look at a sample input format from the above discussion
"inputFormat":
{
"type": "kafka", // New input format type
"headerLabelPrefix": "kafka.header.", // Label prefix for header columns, this will avoid collusions while merging columns
"recordTimestampLabelPrefix": "kafka.", // Kafka record's timestamp is made available in case payload does not carry timestamp
"headerFormat": // Header parser specifying that values are of type string
{
"type": "string"
},
"valueFormat": // Value parser from json parsing
{
"type": "json",
"flattenSpec": {
"useFieldDiscovery": true,
"fields": [...]
}
},
"keyFormat": // Key parser also from json parsing
{
"type": "json"
}
}
Since we have independent sections for header, key and payload, it will enable parsing each section with its own parser, eg., headers coming in as string and payload as json.
KafkaInputFormat will be the uber class extending inputFormat interface and will be responsible for creating individual parsers for header, key and payload, blend the data resolving conflicts in columns and generating a single unified InputRow for Druid ingestion.
"headerFormat" will allow users to plug parser type for the header values and will add default header prefix as "kafka.header."(can be overridden) for attributes to avoid collision while merging attributes with payload.
Kafka payload parser will be responsible for parsing the Value portion of the Kafka record. This is where most of the data will come from and we should be able to plugin existing parser. One thing to note here is that if batching is performed, then the code is augmenting header and key values to every record in the batch.
Kafka key parser will handle parsing Key portion of the Kafka record and will ingest the Key with dimension name as "kafka.key".
## KafkaInputFormat Class:
This is the class that orchestrates sending the consumerRecord to each parser, retrieve rows, merge the columns into one final row for Druid consumption. KafkaInputformat should make sure to release the resources that gets allocated as a part of reader in CloseableIterator<InputRow> during normal and exception cases.
During conflicts in dimension/metrics names, the code will prefer dimension names from payload and ignore the dimension either from headers/key. This is done so that existing input formats can be easily migrated to this new format without worrying about losing information.
* allow user to set group.id for Kafka ingestion task
* fix test coverage by removing deprecated code and add doc
* fix typo
* Update docs/development/extensions-core/kafka-ingestion.md
Co-authored-by: frank chen <frankchen@apache.org>
Co-authored-by: frank chen <frankchen@apache.org>
* druid task auto scale based on kafka lag
* fix kafkaSupervisorIOConfig and KinesisSupervisorIOConfig
* druid task auto scale based on kafka lag
* fix kafkaSupervisorIOConfig and KinesisSupervisorIOConfig
* test dynamic auto scale done
* auto scale tasks tested on prd cluster
* auto scale tasks tested on prd cluster
* modify code style to solve 29055.10 29055.9 29055.17 29055.18 29055.19 29055.20
* rename test fiel function
* change codes and add docs based on capistrant reviewed
* midify test docs
* modify docs
* modify docs
* modify docs
* merge from master
* Extract the autoScale logic out of SeekableStreamSupervisor to minimize putting more stuff inside there && Make autoscaling algorithm configurable and scalable.
* fix ci failed
* revert msic.xml
* add uts to test autoscaler create && scale out/in and kafka ingest with scale enable
* add more uts
* fix inner class check
* add IT for kafka ingestion with autoscaler
* add new IT in groups=kafka-index named testKafkaIndexDataWithWithAutoscaler
* review change
* code review
* remove unused imports
* fix NLP
* fix docs and UTs
* revert misc.xml
* use jackson to build autoScaleConfig with default values
* add uts
* use jackson to init AutoScalerConfig in IOConfig instead of Map<>
* autoscalerConfig interface and provide a defaultAutoScalerConfig
* modify uts
* modify docs
* fix checkstyle
* revert misc.xml
* modify uts
* reviewed code change
* reviewed code change
* code reviewed
* code review
* log changed
* do StringUtils.encodeForFormat when create allocationExec
* code review && limit taskCountMax to partitionNumbers
* modify docs
* code review
Co-authored-by: yuezhang <yuezhang@freewheel.tv>
* add offsetFetchPeriod to kinesis ingestion doc
* Remove jackson dependencies from extensions
* Use fixed delay for lag collection
* Metrics reset after finishing processing
* comments
* Broaden the list of exceptions to retry for
* Unit tests
* Add more tests
* Refactoring
* re-order metrics
* Doc suggestions
Co-authored-by: Charles Smith <38529548+techdocsmith@users.noreply.github.com>
* Add tests
Co-authored-by: Charles Smith <38529548+techdocsmith@users.noreply.github.com>
* Update data-formats.md
Per Suneet, "Since you're editing this file can you also fix the json on line 177 please - it's missing a comma after the }"
* Light text cleanup
* Removing discussion of sample data, since it's repeated in the data loading tutorial, and not immediately relevant here.
* Clarifying accepted values for URI lookup
* Update index.md
* original quickstart full first pass
* original quickstart full first pass
* first pass all the way through
* straggler
* image touchups and finished old tutorial
* a bit of finishing up
* druid-caffeine-cache ext previously removed
* Sample MaxDirectMemorySize value unrealistic
* Review comments
* fixing links
* spell checking gymnastics
* workerThreads desc slightly expanded
* typo
* Typo
* Reversing Kafka config order
* Changing order of configs for Kinesis
* Trying this again: ioConfig then tuningConfig
* Doc update for new input source and input format.
- The input source and input format are promoted in all docs under docs/ingestion
- All input sources including core extension ones are located in docs/ingestion/native-batch.md
- All input formats and parsers including core extension ones are localted in docs/ingestion/data-formats.md
- New behavior of the parallel task with different partitionsSpecs are documented in docs/ingestion/native-batch.md
* parquet
* add warning for range partitioning with sequential mode
* hdfs + s3, gs
* add fs impl for gs
* address comments
* address comments
* gcs
* Add option lateMessageRejectionStartDate
* Use option lateMessageRejectionStartDate
* Fix tests
* Add lateMessageRejectionStartDate to kafka indexing service
* Update tests kafka indexing service
* Fix tests for KafkaSupervisorTest
* Add lateMessageRejectionStartDate to KinesisSupervisorIOConfig
* Fix var name
* Update documentation
* Add check lateMessageRejectionStartDateTime and lateMessageRejectionPeriod, fails if both were specified.
Since it hasn't received updates or community interest in a while, it makes sense
to de-emphasize it in the distribution and most documentation (outside of simple
mentions of its existence).