This PR revives #14978 with a few more bells and whistles. Instead of an unconditional cross-join, we will now split the join condition such that some conditions are now evaluated post-join. To decide what sub-condition goes where, I have refactored DruidJoinRule class to extract unsupported sub-conditions. We build a postJoinFilter out of these unsupported sub-conditions and push to the join.
This patch introduces a param snapshotTime in the iceberg inputsource spec that allows the user to ingest data files associated with the most recent snapshot as of the given time. This helps the user ingest data based on older snapshots by specifying the associated snapshot time.
This patch also upgrades the iceberg core version to 1.4.1
* Add system fields to input sources.
Main changes:
1) The SystemField enum defines system fields "__file_uri", "__file_path",
and "__file_bucket". They are associated with each input entity.
2) The SystemFieldInputSource interface can be added to any InputSource
to make it system-field-capable. It sets up serialization of a list
of configured "systemFields" in the JSON form of the input source, and
provides a method getSystemFieldValue for computing the value of each
system field. Cloud object, HDFS, HTTP, and Local now have this.
* Fix various LocalInputSource calls.
* Fix style stuff.
* Fixups.
* Fix tests and coverage.
* SQL: Plan non-equijoin conditions as cross join followed by filter.
Druid has previously refused to execute joins with non-equality-based
conditions. This was well-intentioned: the idea was to push people to
write their queries in a different, hopefully more performant way.
But as we're moving towards fuller SQL support, it makes more sense to
allow these conditions to go through with the best plan we can come up
with: a cross join followed by a filter. In some cases this will allow
the query to run, and people will be happy with that. In other cases,
it will run into resource limits during execution. But we should at
least give the query a chance.
This patch also updates the documentation to explain how people can
tell whether their queries are being planned this way.
* cartesian is a word.
* Adjust tests.
* Update docs/querying/datasource.md
Co-authored-by: Benedict Jin <asdf2014@apache.org>
---------
Co-authored-by: Benedict Jin <asdf2014@apache.org>
Currently, after an MSQ query, the web console is responsible for waiting for the segments to load. It does so by checking if there are any segments loading into the datasource ingested into, which can cause some issues, like in cases where the segments would never be loaded, or would end up waiting for other ingests as well.
This PR shifts this responsibility to the controller, which would have the list of segments created.
* Add new configurable buffer period to create gap between mark unused and kill of segment
* Changes after testing
* fixes and improvements
* changes after initial self review
* self review changes
* update sql statement that was lacking last_used
* shore up some code in SqlMetadataConnector after self review
* fix derby compatibility and improve testing/docs
* fix checkstyle violations
* Fixes post merge with master
* add some unit tests to improve coverage
* ignore test coverage on new UpdateTools cli tool
* another attempt to ignore UpdateTables in coverage check
* change column name to used_flag_last_updated
* fix a method signature after column name switch
* update docs spelling
* Update spelling dictionary
* Fixing up docs/spelling and integrating altering tasks table with my alteration code
* Update NULL values for used_flag_last_updated in the background
* Remove logic to allow segs with null used_flag_last_updated to be killed regardless of bufferPeriod
* remove unneeded things now that the new column is automatically updated
* Test new background row updater method
* fix broken tests
* fix create table statement
* cleanup DDL formatting
* Revert adding columns to entry table by default
* fix compilation issues after merge with master
* discovered and fixed metastore inserts that were breaking integration tests
* fixup forgotten insert by using pattern of sharing now timestamp across columns
* fix issue introduced by merge
* fixup after merge with master
* add some directions to docs in the case of segment table validation issues
* Add supervisor /resetOffsets API.
- Add a new endpoint /druid/indexer/v1/supervisor/<supervisorId>/resetOffsets
which accepts DataSourceMetadata as a body parameter.
- Update logs, unit tests and docs.
* Add a new interface method for backwards compatibility.
* Rename
* Adjust tests and javadocs.
* Use CoreInjectorBuilder instead of deprecated makeInjectorWithModules
* UT fix
* Doc updates.
* remove extraneous debugging logs.
* Remove the boolean setting; only ResetHandle() and resetInternal()
* Relax constraints and add a new ResetOffsetsNotice; cleanup old logic.
* A separate ResetOffsetsNotice and some cleanup.
* Minor cleanup
* Add a check & test to verify that sequence numbers are only of type SeekableStreamEndSequenceNumbers
* Add unit tests for the no op implementations for test coverage
* CodeQL fix
* checkstyle from merge conflict
* Doc changes
* DOCUSAURUS code tabs fix. Thanks, Brian!
In this PR, I have gotten rid of multiTopic parameter and instead added a topicPattern parameter. Kafka supervisor will pass topicPattern or topic as the stream name to the core ingestion engine. There is validation to ensure that only one of topic or topicPattern will be set. This new setting is easier to understand than overloading the topic field that earlier could be interpreted differently depending on the value of some other field.
This adds a new contrib extension: druid-iceberg-extensions which can be used to ingest data stored in Apache Iceberg format. It adds a new input source of type iceberg that connects to a catalog and retrieves the data files associated with an iceberg table and provides these data file paths to either an S3 or HDFS input source depending on the warehouse location.
Two important dependencies associated with Apache Iceberg tables are:
Catalog : This extension supports reading from either a Hive Metastore catalog or a Local file-based catalog. Support for AWS Glue is not available yet.
Warehouse : This extension supports reading data files from either HDFS or S3. Adapters for other cloud object locations should be easy to add by extending the AbstractInputSourceAdapter.
* Add aggregatorMergeStrategy property to SegmentMetadaQuery.
- Adds a new property aggregatorMergeStrategy to segmentMetadata query.
aggregatorMergeStrategy currently supports three types of merge strategies -
the legacy strict and lenient strategies, and the new latest strategy.
- The latest strategy considers the latest aggregator from the latest segment
by time order when there's a conflict when merging aggregators from different
segments.
- Deprecate lenientAggregatorMerge property; The API validates that both the new
and old properties are not set, and returns an exception.
- When merging segments as part of segmentMetadata query, the segments have a more
elaborate id -- <datasource>_<interval>_merged_<partition_number> format, similar to
the name format that segments usually contain. Previously it was simply "merged".
- Adjust unit tests to test the latest strategy, to assert the returned complete
SegmentAnalysis object instead of just the aggregators for completeness.
* Don't explicitly set strict strategy in tests
* Apply suggestions from code review
Co-authored-by: Katya Macedo <38017980+ektravel@users.noreply.github.com>
* Update docs/querying/segmentmetadataquery.md
* Apply suggestions from code review
Co-authored-by: Katya Macedo <38017980+ektravel@users.noreply.github.com>
---------
Co-authored-by: Katya Macedo <38017980+ektravel@users.noreply.github.com>
Description:
Druid allows a configuration of load rules that may cause a used segment to not be loaded
on any historical. This status is not tracked in the sys.segments table on the broker, which
makes it difficult to determine if the unavailability of a segment is expected and if we should
not wait for it to be loaded on a server after ingestion has finished.
Changes:
- Track replication factor in `SegmentReplicantLookup` during evaluation of load rules
- Update API `/druid/coordinator/v1metadata/segments` to return replication factor
- Add column `replication_factor` to the sys.segments virtual table and populate it in
`MetadataSegmentView`
- If this column is 0, the segment is not assigned to any historical and will not be loaded.
* Add INFORMATION_SCHEMA.ROUTINES to expose Druid operators and functions.
* checkstyle
* remove IS_DETERMISITIC.
* test
* cleanup test
* remove logs and simplify
* fixup unit test
* Add docs for INFORMATION_SCHEMA.ROUTINES table.
* Update test and add another SQL query.
* add stuff to .spelling and checkstyle fix.
* Add more tests for custom operators.
* checkstyle and comment.
* Some naming cleanup.
* Add FUNCTION_ID
* The different Calcite function syntax enums get translated to FUNCTION
* Update docs.
* Cleanup markdown table.
* fixup test.
* fixup intellij inspection
* Review comment: nullable column; add a function to determine function syntax.
* More tests; add non-function syntax operators.
* More unit tests. Also add a separate test for DruidOperatorTable.
* actually just validate non-zero count.
* switch up the order
* checkstyle fixes.
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
Co-authored-by: Victoria Lim <lim.t.victoria@gmail.com>
* Be able to load segments on Peons
This change introduces a new config on WorkerConfig
that indicates how many bytes of each storage
location to use for storage of a task. Said config
is divided up amongst the locations and slots
and then used to set TaskConfig.tmpStorageBytesPerTask
The Peons use their local task dir and
tmpStorageBytesPerTask as their StorageLocations for
the SegmentManager such that they can accept broadcast
segments.
* Allow for Log4J to be configured for peons but still ensure console logging is enforced
This change will allow for log4j to be configured for peons but require console logging is still
configured for them to ensure peon logs are saved to deep storage.
Also fixed the test ConsoleLoggingEnforcementTest to use a valid appender for the non console
Config as the previous config was incorrect and would never return a logger.
* fix checkstyle
* add warning to logger when it overwrites all loggers to be console
* optimize calls for altering logging config for ConsoleLoggingEnforcementConfigurationFactory
add getName to the druid logger class
* update docs, and error message
* edit docs to be more clear
* fix checkstyle issues
* CI fixes - LoggerTest code coverage and fix spelling issue for logging docs
* "maxResultsSize" has been removed from the S3OutputConfig and a default "chunkSize" of 100MiB is now present. This change primarily affects users who wish to use durable storage for MSQ jobs.
This PR is a follow-up to #13819 so that the Tuple sketch functionality can be used in SQL for both ingestion using Multi-Stage Queries (MSQ) and also for analytic queries against Tuple sketch columns.
Document how to report security issues on the security overview page, so we can link this page from the homepage. That should make all the other important security information easier to find as well.
Expands the OIDC based auth in Druid by adding a JWT Authenticator that validates ID Tokens associated with a request. The existing pac4j authenticator works for authenticating web users while accessing the console, whereas this authenticator is for validating Druid API requests made by Direct clients. Services already supporting OIDC can attach their ID tokens to the Druid requests
under the Authorization request header.
* Improve memory efficiency of WrappedRoaringBitmap.
Two changes:
1) Use an int[] for sizes 4 or below.
2) Remove the boolean compressRunOnSerialization. Doesn't save much
space, but it does save a little, and it isn't adding a ton of value
to have it be configurable. It was originally configurable in case
anything broke when enabling it, but it's been a while and nothing
has broken.
* Slight adjustment.
* Adjust for inspection.
* Updates.
* Update snaps.
* Update test.
* Adjust test.
* Fix snaps.