* batch 03 - trig functions
* Apply suggestions from code review
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* applying suggestions and corrections
---------
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Changes the WindowFrame internals / representation a bit; introduces dedicated frametypes for rows and groups which corresponds to the implemented processing methods
* updating first batch of numeric functions
* First batch of functions
* addressing first few comments
* alphabetize list
* draft with suggestions applied
* minor discrepency expr -> <NUMERIC>
* changed raises to calculates
* Update docs/querying/sql-functions.md
* switch to underscore
* changed to exp(1) to match slack message
* adding html text for trademark symbol to .spelling
* fixed discrepancy between description and example
---------
Co-authored-by: Benedict Jin <asdf2014@apache.org>
* Defer more expressions in vectorized groupBy.
This patch adds a way for columns to provide GroupByVectorColumnSelectors,
which controls how the groupBy engine operates on them. This mechanism is used
by ExpressionVirtualColumn to provide an ExpressionDeferredGroupByVectorColumnSelector
that uses the inputs of an expression as the grouping key. The actual expression
evaluation is deferred until the grouped ResultRow is created.
A new context parameter "deferExpressionDimensions" allows users to control when
this deferred selector is used. The default is "fixedWidthNonNumeric", which is a
behavioral change from the prior behavior. Users can get the prior behavior by setting
this to "singleString".
* Fix style.
* Add deferExpressionDimensions to SqlExpressionBenchmark.
* Fix style.
* Fix inspections.
* Add more testing.
* Use valueOrDefault.
* Compute exprKeyBytes a bit lighter-weight.
* Simplify serialized form of JsonInputFormat.
Use JsonInclude for keepNullColumns, assumeNewlineDelimited, and
useJsonNodeReader. Because the default value of keepNullColumns is
variable, we store the original configured value rather than the
derived value, and include if the original value is nonnull.
* Fix test.
* Speed up SQL IN using SCALAR_IN_ARRAY.
Main changes:
1) DruidSqlValidator now includes a rewrite of IN to SCALAR_IN_ARRAY, when the size of
the IN is above inFunctionThreshold. The default value of inFunctionThreshold
is 100. Users can restore the prior behavior by setting it to Integer.MAX_VALUE.
2) SearchOperatorConversion now generates SCALAR_IN_ARRAY when converting to a regular
expression, when the size of the SEARCH is above inFunctionExprThreshold. The default
value of inFunctionExprThreshold is 2. Users can restore the prior behavior by setting
it to Integer.MAX_VALUE.
3) ReverseLookupRule generates SCALAR_IN_ARRAY if the set of reverse-looked-up values is
greater than inFunctionThreshold.
* Revert test.
* Additional coverage.
* Update docs/querying/sql-query-context.md
Co-authored-by: Benedict Jin <asdf2014@apache.org>
* New test.
---------
Co-authored-by: Benedict Jin <asdf2014@apache.org>
* Four changes to scalar_in_array as follow-ups to #16306:
1) Align behavior for `null` scalars to the behavior of the native `in` and `inType` filters: return `true` if the array itself contains null, else return `null`.
2) Rename the class to more closely match the function name.
3) Add a specialization for constant arrays, where we build a `HashSet`.
4) Use `castForEqualityComparison` to properly handle cross-type comparisons.
Additional tests verify comparisons between LONG and DOUBLE are now
handled properly.
* Fix spelling.
* Adjustments from review.
This PR creates an interface for ImmutableRTree and moved the existing implementation to new class which represent 32 bit implementation (stores coordinate as floats). This PR makes the ImmutableRTree extendable to create higher precision implementation as well (64 bit).
In all spatial bound filters, we accept float as input which might not be accurate in the case of high precision implementation of ImmutableRTree. This PR changed the bound filters to accepts the query bounds as double instead of float and it is backward compatible change as it compares double to existing float values in RTree. Previously it was comparing input float to RTree floats which can cause precision loss, now it is little better as it compares double to float which is still not 100% accurate.
There are no changes in the way that we query spatial dimension today except input bound parsing. There is little improvement in string filter predicate which now parse double strings instead of float and compares double to double which is 100% accurate but string predicate is only called when we dont have spatial index.
With allowing the interface to extend ImmutableRTree, we allow to create high precision (HP) implementation and defines new search strategies to perform HP search Iterable<ImmutableBitmap> search(ImmutableDoubleNode node, Bound bound);
With possible HP implementations, Radius bound filter can not really focus on accuracy, it is calculating Euclidean distance in comparing. As EARTH 🌍 is round and not flat, Euclidean distances are not accurate in geo system. This PR adds new param called 'radiusUnit' which allows you to specify units like meters, km, miles etc. It uses https://en.wikipedia.org/wiki/Haversine_formula to check if given geo point falls inside circle or not. Added a test that generates set of points inside and outside in RadiusBoundTest.
* MSQ: Validate that strings and string arrays are not mixed.
When multi-value strings and string arrays coexist in the same column,
it causes problems with "classic MVD" style queries such as:
select * from wikipedia -- fails at runtime
select count(*) from wikipedia where flags = 'B' -- fails at planning time
select flags, count(*) from wikipedia group by 1 -- fails at runtime
To avoid these problems, this patch adds type verification for INSERT
and REPLACE. It is targeted: the only type changes that are blocked are
string-to-array and array-to-string. There is also a way to exclude
certain columns from the type checks, if the user really knows what
they're doing.
* Fixes.
* Tests and docs and error messages.
* More docs.
* Adjustments.
* Adjust message.
* Fix tests.
* Fix test in DV mode.
Starting the process to officially deprecate non SQL compatible modes by updating docs to aggressively call out that Druids non SQL compliant modes are deprecated and will go away someday. There are no code or behavior changes at this PR.
Merging the work so far. @ektravel , @vogievetsky if there are additional improvements, let's track them & make another pr.
* Refactor streaming ingestion docs
* Update property definition
* Update after review
* Update known issues
* Move kinesis and kafka topics to ingestion, add redirects
* Saving changes
* Saving
* Add input format text
* Update after review
* Minor text edit
* Update example syntax
* Revert back to colon
* Fix merge conflicts
* Fix broken links
* Fix spelling error
If lots of keys map to the same value, reversing a LOOKUP call can slow
things down unacceptably. To protect against this, this patch introduces
a parameter sqlReverseLookupThreshold representing the maximum size of an
IN filter that will be created as part of lookup reversal.
If inSubQueryThreshold is set to a smaller value than
sqlReverseLookupThreshold, then inSubQueryThreshold will be used instead.
This allows users to use that single parameter to control IN sizes if they
wish.
A low value of inSubQueryThreshold can cause queries with IN filter to plan as joins more commonly. However, some of these join queries may not get planned as IN filter on data nodes and causes significant perf regression.
* Reverse, pull up lookups in the SQL planner.
Adds two new rules:
1) ReverseLookupRule, which eliminates calls to LOOKUP by doing
reverse lookups.
2) AggregatePullUpLookupRule, which pulls up calls to LOOKUP above
GROUP BY, when the lookup is injective.
Adds configs `sqlReverseLookup` and `sqlPullUpLookup` to control whether
these rules fire. Both are enabled by default.
To minimize the chance of performance problems due to many keys mapping to
the same value, ReverseLookupRule refrains from reversing a lookup if there
are more keys than `inSubQueryThreshold`. The rationale for using this setting
is that reversal works by generating an IN, and the `inSubQueryThreshold`
describes the largest IN the user wants the planner to create.
* Add additional line.
* Style.
* Remove commented-out lines.
* Fix tests.
* Add test.
* Fix doc link.
* Fix docs.
* Add one more test.
* Fix tests.
* Logic, test updates.
* - Make FilterDecomposeConcatRule more flexible.
- Make CalciteRulesManager apply reduction rules til fixpoint.
* Additional tests, simplify code.
* New handling for COALESCE, SEARCH, and filter optimization.
COALESCE is converted by Calcite's parser to CASE, which is largely
counterproductive for us, because it ends up duplicating expressions.
In the current code we end up un-doing it in our CaseOperatorConversion.
This patch has a different approach:
1) Add CaseToCoalesceRule to convert CASE back to COALESCE earlier, before
the Volcano planner runs, using CaseToCoalesceRule.
2) Add FilterDecomposeCoalesceRule to decompose calls like
"f(COALESCE(x, y))" into "(x IS NOT NULL AND f(x)) OR (x IS NULL AND f(y))".
This helps use indexes when available on x and y.
3) Add CoalesceLookupRule to push COALESCE into the third arg of LOOKUP.
4) Add a native "coalesce" function so we can convert 3+ arg COALESCE.
The advantage of this approach is that by un-doing the CASE to COALESCE
conversion earlier, we have flexibility to do more stuff with
COALESCE (like decomposition and pushing into LOOKUP).
SEARCH is an operator used internally by Calcite to represent matching
an argument against some set of ranges. This patch improves our handling
of SEARCH in two ways:
1) Expand NOT points (point "holes" in the range set) from SEARCH as
`!(a || b)` rather than `!a && !b`, which makes it possible to convert
them to a "not" of "in" filter later.
2) Generate those nice conversions for NOT points even if the SEARCH
is not composed of 100% NOT points. Without this change, a SEARCH
for "x NOT IN ('a', 'b') AND x < 'm'" would get converted like
"x < 'a' OR (x > 'a' AND x < 'b') OR (x > 'b' AND x < 'm')".
One of the steps we take when generating Druid queries from Calcite
plans is to optimize native filters. This patch improves this step:
1) Extract common ANDed predicates in ConvertSelectorsToIns, so we can
convert "(a && x = 'b') || (a && x = 'c')" into "a && x IN ('b', 'c')".
2) Speed up CombineAndSimplifyBounds and ConvertSelectorsToIns on
ORs with lots of children by adjusting the logic to avoid calling
"indexOf" and "remove" on an ArrayList.
3) Refactor ConvertSelectorsToIns to reduce duplicated code between the
handling for "selector" and "equals" filters.
* Not so final.
* Fixes.
* Fix test.
* Fix test.
This PR revives #14978 with a few more bells and whistles. Instead of an unconditional cross-join, we will now split the join condition such that some conditions are now evaluated post-join. To decide what sub-condition goes where, I have refactored DruidJoinRule class to extract unsupported sub-conditions. We build a postJoinFilter out of these unsupported sub-conditions and push to the join.
I think this is a problem as it discards the false return value when the putToKeyBuffer can't store the value because of the limit
Not forwarding the return value at that point may lead to the normal continuation here regardless something was not added to the dictionary like here