* As a follow up to #13893, this PR improves the comments added along with examples for the code, as well as adds handling for an edge case where the generated tombstone boundaries were overshooting the bounds of MIN_TIME (or MAX_TIME).
* Improve memory efficiency of WrappedRoaringBitmap.
Two changes:
1) Use an int[] for sizes 4 or below.
2) Remove the boolean compressRunOnSerialization. Doesn't save much
space, but it does save a little, and it isn't adding a ton of value
to have it be configurable. It was originally configurable in case
anything broke when enabling it, but it's been a while and nothing
has broken.
* Slight adjustment.
* Adjust for inspection.
* Updates.
* Update snaps.
* Update test.
* Adjust test.
* Fix snaps.
* Use TaskConfig to get task dir in KubernetesTaskRunner
* Use the first path specified in baseTaskDirPaths instead of deprecated baseTaskDirPath
* Use getBaseTaskDirPaths in generate command
The FiniteFirehoseFactory and InputRowParser classes were deprecated in 0.17.0 (#8823) in favor of InputSource & InputFormat. This PR removes the FiniteFirehoseFactory and all its implementations along with classes solely used by them like Fetcher (Used by PrefetchableTextFilesFirehoseFactory). Refactors classes including tests using FiniteFirehoseFactory to use InputSource instead.
Removing InputRowParser may not be as trivial as many classes that aren't deprecated depends on it (with no alternatives), like EventReceiverFirehoseFactory. Hence FirehoseFactory, EventReceiverFirehoseFactory, and Firehose are marked deprecated.
*When running REPLACE queries, the segments which contain no data are dropped (marked as unused). This PR aims to generate tombstones in place of segments which contain no data to mark their deletion, as is the behavior with the native ingestion.
This will cause InsertCannotReplaceExistingSegmentFault to be removed since it was generated if the interval to be marked unused didn't fully overlap one of the existing segments to replace.
If the intermediate handoff period is less than the task duration and there is no new data in the input topic, task will continuously checkpoint the same offsets again and again. This PR fixes that bug by resetting the checkpoint time even when the task receives the same end offset request again.
* merge druid-core, extendedset, and druid-hll into druid-processing to simplify everything
* fix poms and license stuff
* mockito is evil
* allow reset of JvmUtils RuntimeInfo if tests used static injection to override
* Allow users to add additional metadata to ingestion metrics
When submitting an ingestion spec, users may pass a map of metadata
in the ingestion spec config that will be added to ingestion metrics.
This will make it possible for operators to tag metrics with other
metadata that doesn't necessarily line up with the existing tags
like taskId.
Druid clusters that ingest these metrics can take advantage of the
nested data columns feature to process this additional metadata.
* rename to tags
* docs
* tests
* fix test
* make code cov happy
* checkstyle
* discover nested columns when using nested column indexer for schemaless
* move useNestedColumnIndexerForSchemaDiscovery from AppendableIndexSpec to DimensionsSpec
* Kinesis: More robust default fetch settings.
1) Default recordsPerFetch and recordBufferSize based on available memory
rather than using hardcoded numbers. For this, we need an estimate
of record size. Use 10 KB for regular records and 1 MB for aggregated
records. With 1 GB heaps, 2 processors per task, and nonaggregated
records, recordBufferSize comes out to the same as the old
default (10000), and recordsPerFetch comes out slightly lower (1250
instead of 4000).
2) Default maxRecordsPerPoll based on whether records are aggregated
or not (100 if not aggregated, 1 if aggregated). Prior default was 100.
3) Default fetchThreads based on processors divided by task count on
Indexers, rather than overall processor count.
4) Additionally clean up the serialized JSON a bit by adding various
JsonInclude annotations.
* Updates for tests.
* Additional important verify.
* single typed "root" only nested columns now mimic "regular" columns of those types
* incremental index can now use nested column indexer instead of string indexer for discovered columns
* Support Framing for Window Aggregations
This adds support for framing over ROWS
for window aggregations.
Still not implemented as yet:
1. RANGE frames
2. Multiple different frames in the same query
3. Frames on last/first functions
This commit adds a new class `InputStats` to track the total bytes processed by a task.
The field `processedBytes` is published in task reports along with other row stats.
Major changes:
- Add class `InputStats` to track processed bytes
- Add method `InputSourceReader.read(InputStats)` to read input rows while counting bytes.
> Since we need to count the bytes, we could not just have a wrapper around `InputSourceReader` or `InputEntityReader` (the way `CountableInputSourceReader` does) because the `InputSourceReader` only deals with `InputRow`s and the byte information is already lost.
- Classic batch: Use the new `InputSourceReader.read(inputStats)` in `AbstractBatchIndexTask`
- Streaming: Increment `processedBytes` in `StreamChunkParser`. This does not use the new `InputSourceReader.read(inputStats)` method.
- Extend `InputStats` with `RowIngestionMeters` so that bytes can be exposed in task reports
Other changes:
- Update tests to verify the value of `processedBytes`
- Rename `MutableRowIngestionMeters` to `SimpleRowIngestionMeters` and remove duplicate class
- Replace `CacheTestSegmentCacheManager` with `NoopSegmentCacheManager`
- Refactor `KafkaIndexTaskTest` and `KinesisIndexTaskTest`
Refactor DataSource to have a getAnalysis method()
This removes various parts of the code where while loops and instanceof
checks were being used to walk through the structure of DataSource objects
in order to build a DataSourceAnalysis. Instead we just ask the DataSource
for its analysis and allow the stack to rebuild whatever structure existed.
* Zero-copy local deep storage.
This is useful for local deep storage, since it reduces disk usage and
makes Historicals able to load segments instantaneously.
Two changes:
1) Introduce "druid.storage.zip" parameter for local storage, which defaults
to false. This changes default behavior from writing an index.zip to writing
a regular directory. This is safe to do even during a rolling update, because
the older code actually already handled unzipped directories being present
on local deep storage.
2) In LocalDataSegmentPuller and LocalDataSegmentPusher, use hard links
instead of copies when possible. (Generally this is possible when the
source and destination directory are on the same filesystem.)
Changes:
- Limit max batch size in `SegmentAllocationQueue` to 500
- Rename `batchAllocationMaxWaitTime` to `batchAllocationWaitTime` since the actual
wait time may exceed this configured value.
- Replace usage of `SegmentInsertAction` in `TaskToolbox` with `SegmentTransactionalInsertAction`
In a cluster with a large number of streaming tasks (~1000), SegmentAllocateActions
on the overlord can often take very long intervals of time to finish thus causing spikes
in the `task/action/run/time`. This may result in lag building up while a task waits for a
segment to get allocated.
The root causes are:
- large number of metadata calls made to the segments and pending segments tables
- `giant` lock held in `TaskLockbox.tryLock()` to acquire task locks and allocate segments
Since the contention typically arises when several tasks of the same datasource try
to allocate segments for the same interval/granularity, the allocation run times can be
improved by batching the requests together.
Changes
- Add flags
- `druid.indexer.tasklock.batchSegmentAllocation` (default `false`)
- `druid.indexer.tasklock.batchAllocationMaxWaitTime` (in millis) (default `1000`)
- Add methods `canPerformAsync` and `performAsync` to `TaskAction`
- Submit each allocate action to a `SegmentAllocationQueue`, and add to correct batch
- Process batch after `batchAllocationMaxWaitTime`
- Acquire `giant` lock just once per batch in `TaskLockbox`
- Reduce metadata calls by batching statements together and updating query filters
- Except for batching, retain the whole behaviour (order of steps, retries, etc.)
- Respond to leadership changes and fail items in queue when not leader
- Emit batch and request level metrics
* fixes BlockLayoutColumnarLongs close method to nullify internal buffer.
* fixes other BlockLayoutColumnar supplier close methods to nullify internal buffers.
* fix spotbugs
Main changes:
1) Convert SeekableStreamIndexTaskClient to an interface, move old code
to SeekableStreamIndexTaskClientSyncImpl, and add new implementation
SeekableStreamIndexTaskClientAsyncImpl that uses ServiceClient.
2) Add "chatAsync" parameter to seekable stream supervisors that causes
the supervisor to use an async task client.
3) In SeekableStreamSupervisor.discoverTasks, adjust logic to avoid making
blocking RPC calls in workerExec threads.
4) In SeekableStreamSupervisor generally, switch from Futures.successfulAsList
to FutureUtils.coalesce, so we can better capture the errors that occurred
with contacting individual tasks.
Other, related changes:
1) Add ServiceRetryPolicy.retryNotAvailable, which controls whether
ServiceClient retries unavailable services. Useful since we do not
want to retry calls unavailable tasks within the service client. (The
supervisor does its own higher-level retries.)
2) Add FutureUtils.transformAsync, a more lambda friendly version of
Futures.transform(f, AsyncFunction).
3) Add FutureUtils.coalesce. Similar to Futures.successfulAsList, but
returns Either instead of using null on error.
4) Add JacksonUtils.readValue overloads for JavaType and TypeReference.
Currently, a shared lock is acquired only when all other locks are also shared locks.
This commit updates the behaviour and acquires a shared lock only if all locks
of equal or higher priority are either shared locks or are already revoked.
The lock type of locks with lower priority does not matter as they can be revoked.
Eliminates two common sources of noise with Kafka supervisors that have
large numbers of tasks and partitions:
1) Log the report at DEBUG rather than INFO level at each run cycle.
It can get quite large, and can be retrieved via API when needed.
2) Use log4j2.xml to quiet down the org.apache.kafka.clients.consumer.internals
package. Avoids a log message per-partition per-minute as part of seeking
to the latest offset in the reporting thread. In the tasks, where this
sort of logging might be more useful, we have another log message with
the same information: "Seeking partition[%s] to[%s]".
* SeekableStreamSupervisor: Don't enqueue duplicate notices.
Similar goal to #12018, but more aggressive. Don't enqueue a notice at
all if it is equal to one currently in the queue.
* Adjustments from review.
* Update indexing-service/src/test/java/org/apache/druid/indexing/overlord/supervisor/NoticesQueueTest.java
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
Changes:
- Add a metric for partition-wise kafka/kinesis lag for streaming ingestion.
- Emit lag metrics for streaming ingestion when supervisor is not suspended and state is in {RUNNING, IDLE, UNHEALTHY_TASKS, UNHEALTHY_SUPERVISOR}
- Document metrics
* Compaction: Fetch segments one at a time on main task; skip when possible.
Compact tasks include the ability to fetch existing segments and determine
reasonable defaults for granularitySpec, dimensionsSpec, and metricsSpec.
This is a useful feature that makes compact tasks work well even when the
user running the compaction does not have a clear idea of what they want
the compacted segments to be like.
However, this comes at a cost: it takes time, and disk space, to do all
of these fetches. This patch improves the situation in two ways:
1) When segments do need to be fetched, download them one at a time and
delete them when we're done. This still takes time, but minimizes the
required disk space.
2) Don't fetch segments on the main compact task when they aren't needed.
If the user provides a full granularitySpec, dimensionsSpec, and
metricsSpec, we can skip it.
* Adjustments.
* Changes from code review.
* Fix logic for determining rollup.