* Undocument unused segments retrieval API.
* Mark API deprecated and unstable. Note that it'll be removed.
* Cleanup .spelling entries
* Remove the Unstable annotation
### Description
This pr adds an api for retrieving unused segments for a particular datasource. The api supports pagination by the addition of `limit` and `lastSegmentId` parameters. The resulting unused segments are returned with optional `sortOrder`, `ASC` or `DESC` with respect to the matching segments `id`, `start time`, and `end time`, or not returned in any guarenteed order if `sortOrder` is not specified
`GET /druid/coordinator/v1/datasources/{dataSourceName}/unusedSegments?interval={interval}&limit={limit}&lastSegmentId={lastSegmentId}&sortOrder={sortOrder}`
Returns a list of unused segments for a datasource in the cluster contained within an optionally specified interval.
Optional parameters for limit and lastSegmentId can be given as well, to limit results and enable paginated results.
The results may be sorted in either ASC, or DESC order depending on specifying the sortOrder parameter.
`dataSourceName`: The name of the datasource
`interval`: the specific interval to search for unused segments for.
`limit`: the maximum number of unused segments to return information about. This property helps to
support pagination
`lastSegmentId`: the last segment id from which to search for results. All segments returned are > this segment
lexigraphically if sortOrder is null or ASC, or < this segment lexigraphically if sortOrder is DESC.
`sortOrder`: Specifies the order with which to return the matching segments by start time, end time. A null
value indicates that order does not matter.
This PR has:
- [x] been self-reviewed.
- [ ] using the [concurrency checklist](https://github.com/apache/druid/blob/master/dev/code-review/concurrency.md) (Remove this item if the PR doesn't have any relation to concurrency.)
- [x] added documentation for new or modified features or behaviors.
- [ ] a release note entry in the PR description.
- [x] added Javadocs for most classes and all non-trivial methods. Linked related entities via Javadoc links.
- [ ] added or updated version, license, or notice information in [licenses.yaml](https://github.com/apache/druid/blob/master/dev/license.md)
- [x] added comments explaining the "why" and the intent of the code wherever would not be obvious for an unfamiliar reader.
- [x] added unit tests or modified existing tests to cover new code paths, ensuring the threshold for [code coverage](https://github.com/apache/druid/blob/master/dev/code-review/code-coverage.md) is met.
- [ ] added integration tests.
- [x] been tested in a test Druid cluster.
In the current design, brokers query both data nodes and tasks to fetch the schema of the segments they serve. The table schema is then constructed by combining the schemas of all segments within a datasource. However, this approach leads to a high number of segment metadata queries during broker startup, resulting in slow startup times and various issues outlined in the design proposal.
To address these challenges, we propose centralizing the table schema management process within the coordinator. This change is the first step in that direction. In the new arrangement, the coordinator will take on the responsibility of querying both data nodes and tasks to fetch segment schema and subsequently building the table schema. Brokers will now simply query the Coordinator to fetch table schema. Importantly, brokers will still retain the capability to build table schemas if the need arises, ensuring both flexibility and resilience.
There is a current issue due to inconsistent metadata between worker and controller in MSQ. A controller can receive one set of segments, which are then marked as unused by, say, a compaction job. The worker would be unable to get the segment information as MetadataResource.