This PR adds the following to the ATTRIBUTES column in the explain plan output:
- partitionedBy
- clusteredBy
- replaceTimeChunks
This PR leverages the work done in #14074, which added a new column ATTRIBUTES
to encapsulate all the statement-related attributes.
In this PR, we are enhancing KafkaEmitter, to emit metadata about published segments (SegmentMetadataEvent) into a Kafka topic. This segment metadata information that gets published into Kafka, can be used by any other downstream services to query Druid intelligently based on the segments published. The segment metadata gets published into kafka topic in json string format similar to other events.
### Description
This change allows for consideration of the input format and compression when computing how to split the input files among available tasks, in MSQ ingestion, when considering the value of the `maxInputBytesPerWorker` query context parameter. This query parameter allows users to control the maximum number of bytes, with granularity of input file / object, that ingestion tasks will be assigned to ingest. With this change, this context parameter now denotes the estimated weighted size in bytes of the input to split on, with consideration for input format and compression format, rather than the actual file size, reported by the file system. We assume uncompressed newline delimited json as a baseline, with scaling factor of `1`. This means that when computing the byte weight that a file has towards the input splitting, we take the file size as is, if uncompressed json, 1:1. It was found during testing that gzip compressed json, and parquet, has scale factors of `4` and `8` respectively, meaning that each byte of data is weighted 4x and 8x respectively, when computing input splits. This weighted byte scaling is only considered for MSQ ingestion that uses either LocalInputSource or CloudObjectInputSource at the moment. The default value of the `maxInputBytesPerWorker` query context parameter has been updated from 10 GiB, to 512 MiB
The defaults of the following config values in the `CoordinatorDynamicConfig` are being updated.
1. `maxSegmentsInNodeLoadingQueue = 500` (previous = 100)
2. `replicationThrottleLimit = 500` (previous = 10)
Rationale: With round-robin segment assignment now being the default assignment technique,
the Coordinator can assign a large number of under-replicated/unavailable segments very quickly,
without getting stuck in `RunRules` duty due to very slow strategy-based cost computations.
3. `maxSegmentsToMove = 100` (previous = 5)
Rationale: A very low value (say 5) is ineffective in balancing especially if there are many segments
to balance. A very large value can cause excessive moves, which has these disadvantages:
- Load of moving segments competing with load of unavailable/under-replicated segments
- Unnecessary network costs due to constant download and delete of segments
These defaults will be revisited after #13197 is merged.
This PR adds a new interface to control how SegmentMetadataCache chooses ColumnType when faced with differences between segments for SQL schemas which are computed, exposed as druid.sql.planner.metadataColumnTypeMergePolicy and adds a new 'least restrictive type' mode to allow choosing the type that data across all segments can best be coerced into and sets this as the default behavior.
This is a behavior change around when segment driven schema migrations take effect for the SQL schema. With latestInterval, the SQL schema will be updated as soon as the first job with the new schema has published segments, while using leastRestrictive, the schema will only be updated once all segments are reindexed to the new type. The benefit of leastRestrictive is that it eliminates a bunch of type coercion errors that can happen in SQL when types are varied across segments with latestInterval because the newest type is not able to correctly represent older data, such as if the segments have a mix of ARRAY and number types, or any other combinations that lead to odd query plans.
* Make resources an ordered collection so it's deterministic.
* test cleanup
* fixup docs.
* Replace deprecated ObjectNode#put() calls with ObjectNode#set().
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
Co-authored-by: Victoria Lim <lim.t.victoria@gmail.com>
* Be able to load segments on Peons
This change introduces a new config on WorkerConfig
that indicates how many bytes of each storage
location to use for storage of a task. Said config
is divided up amongst the locations and slots
and then used to set TaskConfig.tmpStorageBytesPerTask
The Peons use their local task dir and
tmpStorageBytesPerTask as their StorageLocations for
the SegmentManager such that they can accept broadcast
segments.
* Make LoggingEmitter more useful
* Skip code coverage for facade classes
* fix spellcheck
* code review
* fix dependency
* logging.md
* fix checkstyle
* Add back jacoco version to main pom
* fix typo in s3 docs. add readme to s3 module.
* Update extensions-core/s3-extensions/README.md
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
* cleanup readme for s3 extension and link to repo markdown doc instead of web docs
---------
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
Hadoop 2 often causes red security scans on Druid distribution because of the dependencies it brings. We want to move away from Hadoop 2 and provide Hadoop 3 distribution available. Switch druid to building with Hadoop 3 by default. Druid will still be compatible with Hadoop 2 and users can build hadoop-2 compatible distribution using hadoop2 profile.
* Compaction: Block input specs not aligned with segmentGranularity.
When input intervals are not aligned with segmentGranularity, data may be
overshadowed if it lies in the space between the input intervals and the
output segmentGranularity.
In MSQ REPLACE, this is a validation error. IMO the same behavior makes
sense for compaction tasks. In case anyone was depending on the ability
to compact nonaligned intervals, a configuration parameter
allowNonAlignedInterval is provided. I don't expect it to be used much.
* Remove unused.
* ITCompactionTaskTest uses non-aligned intervals.
* MSQ: Subclass CalciteJoinQueryTest, other supporting changes.
The main change is the new tests: we now subclass CalciteJoinQueryTest
in CalciteSelectJoinQueryMSQTest twice, once for Broadcast and once for
SortMerge.
Two supporting production changes for default-value mode:
1) InputNumberDataSource is marked as concrete, to allow leftFilter to
be pushed down to it.
2) In default-value mode, numeric frame field readers can now return nulls.
This is necessary when stacking joins on top of joins: nulls must be
preserved for semantics that match broadcast joins and native queries.
3) In default-value mode, StringFieldReader.isNull returns true on empty
strings in addition to nulls. This is more consistent with the behavior
of the selectors, which map empty strings to null as well in that mode.
As an effect of change (2), the InsertTimeNull change from #14020 (to
replace null timestamps with default timestamps) is reverted. IMO, this
is fine, as either behavior is defensible, and the change from #14020
hasn't been released yet.
* Adjust tests.
* Style fix.
* Additional tests.
* Allow for Log4J to be configured for peons but still ensure console logging is enforced
This change will allow for log4j to be configured for peons but require console logging is still
configured for them to ensure peon logs are saved to deep storage.
Also fixed the test ConsoleLoggingEnforcementTest to use a valid appender for the non console
Config as the previous config was incorrect and would never return a logger.
* fix checkstyle
* add warning to logger when it overwrites all loggers to be console
* optimize calls for altering logging config for ConsoleLoggingEnforcementConfigurationFactory
add getName to the druid logger class
* update docs, and error message
* edit docs to be more clear
* fix checkstyle issues
* CI fixes - LoggerTest code coverage and fix spelling issue for logging docs
*
Adds new run time parameter druid.indexer.task.tmpStorageBytesPerTask. This sets a limit for the amount of temporary storage disk space used by tasks. This limit is currently only respected by MSQ tasks.
* Removes query context parameters intermediateSuperSorterStorageMaxLocalBytes and composedIntermediateSuperSorterStorageEnabled. Composed intermediate super sorter (which was enabled by composedIntermediateSuperSorterStorageEnabled) is now enabled automatically if durableShuffleStorage is set to true. intermediateSuperSorterStorageMaxLocalBytes is calculated from the limit set by the run time parameter druid.indexer.task.tmpStorageBytesPerTask.
* "maxResultsSize" has been removed from the S3OutputConfig and a default "chunkSize" of 100MiB is now present. This change primarily affects users who wish to use durable storage for MSQ jobs.
This commit adds attributes that contain metadata information about the query
in the EXPLAIN PLAN output. The attributes currently contain two items:
- `statementTyp`: SELECT, INSERT or REPLACE
- `targetDataSource`: provides the target datasource name for DML statements
It is added to both the legacy and native query plan outputs.
* Make the tasks run with only a single directory
There was a change that tried to get indexing to run on multiple disks
It made a bunch of changes to how tasks run, effectively hiding the
"safe" directory for tasks to write files into from the task code itself
making it extremely difficult to do anything correctly inside of a task.
This change reverts those changes inside of the tasks and makes it so that
only the task runners are the ones that make decisions about which
mount points should be used for storing task-related files.
It adds the config druid.worker.baseTaskDirs which can be used by the
task runners to know which directories they should schedule tasks inside of.
The TaskConfig remains the authoritative source of configuration for where
and how an individual task should be operating.
* Frames: Ensure nulls are read as default values when appropriate.
Fixes a bug where LongFieldWriter didn't write a properly transformed
zero when writing out a null. This had no meaningful effect in SQL-compatible
null handling mode, because the field would get treated as a null anyway.
But it does have an effect in default-value mode: it would cause Long.MIN_VALUE
to get read out instead of zero.
Also adds NullHandling checks to the various frame-based column selectors,
allowing reading of nullable frames by servers in default-value mode.
* use new sampler features
* supprot kafka format
* update DQT, fix tests
* prefer non numeric formats
* fix input format step
* boost SQL data loader
* delete dimension in auto discover mode
* inline example specs
* feedback updates
* yeet the format into valueFormat when switching to kafka
* kafka format is now a toggle
* even better form layout
* rename
* Update api.md
I have created changes in api call of python according to latest version of requests 2.28.1 library. Along with this there are some irregularities between use of <your-instance> and <hostname> so I have tried to fix that also.
* Update api.md
made some changes in declaring USER and PASSWORD
* Add a new fault "QueryRuntimeError" to MSQ engine to capture native query errors.
* Fixed bug in MSQ fault tolerance where worker were being retried if `UnexpectedMultiValueDimensionException` was thrown.
* An exception from the query runtime with `org.apache.druid.query` as the package name is thrown as a QueryRuntimeError
This PR is a follow-up to #13819 so that the Tuple sketch functionality can be used in SQL for both ingestion using Multi-Stage Queries (MSQ) and also for analytic queries against Tuple sketch columns.
Document how to report security issues on the security overview page, so we can link this page from the homepage. That should make all the other important security information easier to find as well.
Expands the OIDC based auth in Druid by adding a JWT Authenticator that validates ID Tokens associated with a request. The existing pac4j authenticator works for authenticating web users while accessing the console, whereas this authenticator is for validating Druid API requests made by Direct clients. Services already supporting OIDC can attach their ID tokens to the Druid requests
under the Authorization request header.
* Hook up PodTemplateTaskAdapter
* Make task adapter TYPE parameters final
* Rename adapters types
* Include specified adapter name in exception message
* Documentation for sidecarSupport deprecation
* Fix order
* Set TASK_ID as environment variable in PodTemplateTaskAdapter (#13969)
* Update docs/development/extensions-contrib/k8s-jobs.md
Co-authored-by: Abhishek Agarwal <1477457+abhishekagarwal87@users.noreply.github.com>
* Hook up PodTemplateTaskAdapter
* Make task adapter TYPE parameters final
* Rename adapters types
* Include specified adapter name in exception message
* Documentation for sidecarSupport deprecation
* Fix order
* fix spelling errors
---------
Co-authored-by: Abhishek Agarwal <1477457+abhishekagarwal87@users.noreply.github.com>
* Add segment generator counters to reports
* Remove unneeded annotation
* Fix checkstyle and coverage
* Add persist and merged as new metrics
* Address review comments
* Fix checkstyle
* Create metrics class to handle updating counters
* Address review comments
* Add rowsPushed as a new metrics
* Removing intermediateSuperSorterStorageMaxLocalBytes, maxInputBytesPerWorker, composedIntermediateSuperSorterStorageEnabled, clusterStatisticsMergeMode from docs
* Adding documentation in the context class.
* Refactoring and bug fixes on top of unnest. The filter now is passed inside the unnest cursors. Added tests for scenarios such as
1. filter on unnested column which involves a left filter rewrite
2. filter on unnested virtual column which pushes the filter to the right only and involves no rewrite
3. not filters
4. SQL functions applied on top of unnested column
5. null present in first row of the column to be unnested
* Various changes and fixes to UNNEST.
Native changes:
1) UnnestDataSource: Replace "column" and "outputName" with "virtualColumn".
This enables pushing expressions into the datasource. This in turn
allows us to do the next thing...
2) UnnestStorageAdapter: Logically apply query-level filters and virtual
columns after the unnest operation. (Physically, filters are pulled up,
when possible.) This is beneficial because it allows filters and
virtual columns to reference the unnested column, and because it is
consistent with how the join datasource works.
3) Various documentation updates, including declaring "unnest" as an
experimental feature for now.
SQL changes:
1) Rename DruidUnnestRel (& Rule) to DruidUnnestRel (& Rule). The rel
is simplified: it only handles the UNNEST part of a correlated join.
Constant UNNESTs are handled with regular inline rels.
2) Rework DruidCorrelateUnnestRule to focus on pulling Projects from
the left side up above the Correlate. New test testUnnestTwice verifies
that this works even when two UNNESTs are stacked on the same table.
3) Include ProjectCorrelateTransposeRule from Calcite to encourage
pushing mappings down below the left-hand side of the Correlate.
4) Add a new CorrelateFilterLTransposeRule and CorrelateFilterRTransposeRule
to handle pulling Filters up above the Correlate. New tests
testUnnestWithFiltersOutside and testUnnestTwiceWithFilters verify
this behavior.
5) Require a context feature flag for SQL UNNEST, since it's undocumented.
As part of this, also cleaned up how we handle feature flags in SQL.
They're now hooked into EngineFeatures, which is useful because not
all engines support all features.
* Improve memory efficiency of WrappedRoaringBitmap.
Two changes:
1) Use an int[] for sizes 4 or below.
2) Remove the boolean compressRunOnSerialization. Doesn't save much
space, but it does save a little, and it isn't adding a ton of value
to have it be configurable. It was originally configurable in case
anything broke when enabling it, but it's been a while and nothing
has broken.
* Slight adjustment.
* Adjust for inspection.
* Updates.
* Update snaps.
* Update test.
* Adjust test.
* Fix snaps.
* Sort-merge join and hash shuffles for MSQ.
The main changes are in the processing, multi-stage-query, and sql modules.
processing module:
1) Rename SortColumn to KeyColumn, replace boolean descending with KeyOrder.
This makes it nicer to model hash keys, which use KeyOrder.NONE.
2) Add nullability checkers to the FieldReader interface, and an
"isPartiallyNullKey" method to FrameComparisonWidget. The join
processor uses this to detect null keys.
3) Add WritableFrameChannel.isClosed and OutputChannel.isReadableChannelReady
so callers can tell which OutputChannels are ready for reading and which
aren't.
4) Specialize FrameProcessors.makeCursor to return FrameCursor, a random-access
implementation. The join processor uses this to rewind when it needs to
replay a set of rows with a particular key.
5) Add MemoryAllocatorFactory, which is embedded inside FrameWriterFactory
instead of a particular MemoryAllocator. This allows FrameWriterFactory
to be shared in more scenarios.
multi-stage-query module:
1) ShuffleSpec: Add hash-based shuffles. New enum ShuffleKind helps callers
figure out what kind of shuffle is happening. The change from SortColumn
to KeyColumn allows ClusterBy to be used for both hash-based and sort-based
shuffling.
2) WorkerImpl: Add ability to handle hash-based shuffles. Refactor the logic
to be more readable by moving the work-order-running code to the inner
class RunWorkOrder, and the shuffle-pipeline-building code to the inner
class ShufflePipelineBuilder.
3) Add SortMergeJoinFrameProcessor and factory.
4) WorkerMemoryParameters: Adjust logic to reserve space for output frames
for hash partitioning. (We need one frame per partition.)
sql module:
1) Add sqlJoinAlgorithm context parameter; can be "broadcast" or
"sortMerge". With native, it must always be "broadcast", or it's a
validation error. MSQ supports both. Default is "broadcast" in
both engines.
2) Validate that MSQs do not use broadcast join with RIGHT or FULL join,
as results are not correct for broadcast join with those types. Allow
this in native for two reasons: legacy (the docs caution against it,
but it's always been allowed), and the fact that it actually *does*
generate correct results in native when the join is processed on the
Broker. It is much less likely that MSQ will plan in such a way that
generates correct results.
3) Remove subquery penalty in DruidJoinQueryRel when using sort-merge
join, because subqueries are always required, so there's no reason
to penalize them.
4) Move previously-disabled join reordering and manipulation rules to
FANCY_JOIN_RULES, and enable them when using sort-merge join. Helps
get to better plans where projections and filters are pushed down.
* Work around compiler problem.
* Updates from static analysis.
* Fix @param tag.
* Fix declared exception.
* Fix spelling.
* Minor adjustments.
* wip
* Merge fixups
* fixes
* Fix CalciteSelectQueryMSQTest
* Empty keys are sortable.
* Address comments from code review. Rename mux -> mix.
* Restore inspection config.
* Restore original doc.
* Reorder imports.
* Adjustments
* Fix.
* Fix imports.
* Adjustments from review.
* Update header.
* Adjust docs.
Python Druid API for use in notebooks
Revises existing notebooks and readme to reference
the new API.
Notebook to explain the new API.
Split README into a console version and a notebook
version to work around lack of a nice display for
md files.
Update the REST API notebook to use simpler Requests calls
Converted the SQL tutorial to use the Python library
README file, converted to using properties
---------
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
You can now do the following operations with TupleSketches in Post Aggregation Step
Get the Sketch Output as Base64 String
Provide a constant Tuple Sketch in post-aggregation step that can be used in Set Operations
Get the Estimated Value(Sum) of Summary/Metrics Objects associated with Tuple Sketch
The FiniteFirehoseFactory and InputRowParser classes were deprecated in 0.17.0 (#8823) in favor of InputSource & InputFormat. This PR removes the FiniteFirehoseFactory and all its implementations along with classes solely used by them like Fetcher (Used by PrefetchableTextFilesFirehoseFactory). Refactors classes including tests using FiniteFirehoseFactory to use InputSource instead.
Removing InputRowParser may not be as trivial as many classes that aren't deprecated depends on it (with no alternatives), like EventReceiverFirehoseFactory. Hence FirehoseFactory, EventReceiverFirehoseFactory, and Firehose are marked deprecated.
*When running REPLACE queries, the segments which contain no data are dropped (marked as unused). This PR aims to generate tombstones in place of segments which contain no data to mark their deletion, as is the behavior with the native ingestion.
This will cause InsertCannotReplaceExistingSegmentFault to be removed since it was generated if the interval to be marked unused didn't fully overlap one of the existing segments to replace.
* docs: add juptyer API tutorial for API and jupyter tutorial index (#3)
(cherry picked from commit aeb8d9e3390fa26d9c533dce0862295b80c58583)
* update prereqs and fix jupyterlab name
* Removing notebook since 13345 has it
13345 should be merged first
* update contributing instructions
* docs: link to the Druid SQL tutorial
* Add link to partitioning
* fix merge conflict
* Saving
* Update docs/tutorials/tutorial-jupyter-index.md
* Remove partitioning
---------
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
Co-authored-by: brian.le <brian.le@imply.io>
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Better sidecar support
* remove un-thrown exception from test
* Druid you are such a stickler about spelling :)
* Only require the primaryContainerName, no need to exclude containers
Without perl 5 I was unable to start druid using the instructions in the quickstart guide. I'm not certain what versions it might require, but the one that I got working was perl 5
> This is perl 5, version 36, subversion 0 (v5.36.0) built for x86_64-linux-thread-multi
### Description
This change adds a new config property `druid.sql.planner.operatorConversion.denyList`, which allows a user to specify
any operator conversions that they wish to disallow. A user may want to do this for a number of reasons, including security concerns. The default value of this property is the empty list `[]`, which does not disallow any operator conversions.
An example usage of this property is `druid.sql.planner.operatorConversion.denyList=["extern"]`, which disallows the usage of the `extern` operator conversion. If the property is configured this way, and a user of the Druid cluster tries to submit a query that uses the `extern` function, such as the example given [here](https://druid.apache.org/docs/latest/multi-stage-query/examples.html#insert-with-no-rollup), a response with http response code `400` is returned with en error body similar to the following:
```
{
"taskId": "4ec5b0b6-fa9b-4c3a-827d-2308294e9985",
"state": "FAILED",
"error": {
"error": "Plan validation failed",
"errorMessage": "org.apache.calcite.runtime.CalciteContextException: From line 28, column 5 to line 32, column 5: No match found for function signature EXTERN(<CHARACTER>, <CHARACTER>, <CHARACTER>)",
"errorClass": "org.apache.calcite.tools.ValidationException",
"host": null
}
}
```
* Allow users to add additional metadata to ingestion metrics
When submitting an ingestion spec, users may pass a map of metadata
in the ingestion spec config that will be added to ingestion metrics.
This will make it possible for operators to tag metrics with other
metadata that doesn't necessarily line up with the existing tags
like taskId.
Druid clusters that ingest these metrics can take advantage of the
nested data columns feature to process this additional metadata.
* rename to tags
* docs
* tests
* fix test
* make code cov happy
* checkstyle
Merging regardless of nit since topic is in better shape.
* refresh the update data tutorial
* Apply suggestions from code review
Co-authored-by: Jill Osborne <jill.osborne@imply.io>
---------
Co-authored-by: Jill Osborne <jill.osborne@imply.io>
* Fix lookup docs
* Fix spelling
* Apply suggestions from code review
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
---------
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Add a new API to return the history of changes to automatic compaction config history to make it easy for users to see what changes have been made to their auto-compaction config.
The API is scoped per dataSource to allow users to triage issues with an individual dataSource. The API responds with a list of configs when there is a change to either the settings that impact all auto-compaction configs on a cluster or the dataSource in question.
Much improved table functions
* Revises properties, definitions in the catalog
* Adds a "table function" abstraction to model such functions
* Specific functions for HTTP, inline, local and S3.
* Extended SQL types in the catalog
* Restructure external table definitions to use table functions
* EXTEND syntax for Druid's extern table function
* Support for array-valued table function parameters
* Support for array-valued SQL query parameters
* Much new documentation
* Kinesis: More robust default fetch settings.
1) Default recordsPerFetch and recordBufferSize based on available memory
rather than using hardcoded numbers. For this, we need an estimate
of record size. Use 10 KB for regular records and 1 MB for aggregated
records. With 1 GB heaps, 2 processors per task, and nonaggregated
records, recordBufferSize comes out to the same as the old
default (10000), and recordsPerFetch comes out slightly lower (1250
instead of 4000).
2) Default maxRecordsPerPoll based on whether records are aggregated
or not (100 if not aggregated, 1 if aggregated). Prior default was 100.
3) Default fetchThreads based on processors divided by task count on
Indexers, rather than overall processor count.
4) Additionally clean up the serialized JSON a bit by adding various
JsonInclude annotations.
* Updates for tests.
* Additional important verify.
* reword single server page
* fix typo
* Update docs/operations/single-server.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* spelling
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Changes:
- Remove specification of a Druid version in the quickstart, because the previous step
instructs downloading the latest version anyway.
- Mention usage of memory parameter in the quickstart
Main change: clarify that the "default value" for casts only applies if
druid.generic.useDefaultValueForNull = true.
Secondary change: adjust a bunch of wording from future to present tense.
Follow up to #13520
Bytes processed are currently tracked for intermediate stages in MSQ ingestion.
This patch adds the capability to track the bytes processed by an MSQ controller
task while reading from an external input source or a segment source.
Changes:
- Track `processedBytes` for every `InputSource` read in `ExternalInputSliceReader`
- Update `ChannelCounters` with the above obtained `processedBytes` when incrementing
the input file count.
- Update task report structure in docs
The total input processed bytes can be obtained by summing the `processedBytes` as follows:
totalBytes = 0
for every root stage (i.e. a stage which does not have another stage as an input):
for every worker in that stage:
for every input channel: (i.e. channels with prefix "input", e.g. "input0", "input1", etc.)
totalBytes += processedBytes