This commit adds attributes that contain metadata information about the query
in the EXPLAIN PLAN output. The attributes currently contain two items:
- `statementTyp`: SELECT, INSERT or REPLACE
- `targetDataSource`: provides the target datasource name for DML statements
It is added to both the legacy and native query plan outputs.
* SQL: Fix natural comparator selection for groupBy.
DruidQuery.computeSorting had some unique logic for finding natural
comparators for SQL types. It should be using getStringComparatorForRelDataType
instead.
One good effect here is that the comparator for BOOLEAN is now
NUMERIC rather than LEXICOGRAPHIC. The test case illustrates this.
* Remove msqCompatible, for now.
* Fix test.
* MSQ: Use the same result coercion routines as the regular SQL endpoint.
The main changes are to move NativeQueryMaker.coerce to SqlResults, and
to formally make the list of sqlTypeNames from the MSQ results reports
use SqlTypeNames.
- Change the default to MSQ-compatible rather than MSQ-incompatible.
The explicit marker function is now "notMsqCompatible()".
* MSQ: Support for querying lookup and inline data directly.
Main changes:
1) Add of LookupInputSpec and DataSourcePlan.forLookup.
2) Add InlineInputSpec, and modify of DataSourcePlan.forInline to use
this instead of an ExternalInputSpec with JSON. This allows the inline
data to act as the right-hand side of a join, if needed.
Supporting changes:
1) Modify JoinDataSource's leftFilter validation to be a little less
strict: it's now OK with leftFilter being attached to any concrete
leaf (no children) datasource, rather than requiring it be a table.
This allows MSQ to create JoinDataSource with InputNumberDataSource
as the base.
2) Add SegmentWranglerModule to CliIndexer, CliPeon. This allows them to
query lookups and inline data directly.
* Updates based on CI.
* Additional tests.
* Style fix.
* Remove unused import.
* Make the tasks run with only a single directory
There was a change that tried to get indexing to run on multiple disks
It made a bunch of changes to how tasks run, effectively hiding the
"safe" directory for tasks to write files into from the task code itself
making it extremely difficult to do anything correctly inside of a task.
This change reverts those changes inside of the tasks and makes it so that
only the task runners are the ones that make decisions about which
mount points should be used for storing task-related files.
It adds the config druid.worker.baseTaskDirs which can be used by the
task runners to know which directories they should schedule tasks inside of.
The TaskConfig remains the authoritative source of configuration for where
and how an individual task should be operating.
The GCP initialization pulls credentials for
talking to GCP. We want that to only happen
when fully required and thus want the GCP-related
objects lazily instantiated.
* MSQ: Support multiple result columns with the same name.
This is allowed in SQL, and is supported by the regular SQL endpoint.
We retain a validation that INSERT ... SELECT does not allow multiple
columns with the same name, because column names in segments must be
unique.
changes:
* adds support for boolean inputs to the classic long dimension indexer, which plays nice with LONG being the semi official boolean type in Druid, and even nicer when druid.expressions.useStrictBooleans is set to true, since the sampler when using the new 'auto' schema when 'useSchemaDiscovery' is specified on the dimensions spec will call the type out as LONG
* fix bugs with sampler response and new schema discovery stuff incorrectly using classic 'json' type for the logical schema instead of the new 'auto' type
### Description
Previously msq controller and worker tasks did not have implementations for the `getInputSourceResources()` method. This causes the submission of these tasks to fail if the following auth config is enabled:
`druid.auth.enableInputSourceSecurity=true`
Added implementations of this method for these tasks that return an empty set of input sources. This means that for these task types, if `druid.auth.enableInputSourceSecurity=true` config is used, the input source types will be properly computed and authorized in the SQL layer, but not if the equivalent controller / worker tasks are submitted to the task endpoint.
### Description
This change allows for input sources used during MSQ ingestion to be authorized for multiple input source types, instead of just 1. Such an input source that allows for multiple types is the CombiningInputSource.
Also fixed bug that caused some input source specific functions to be authorized against the permissions
`
[
new ResourceAction(new Resource(ResourceType.EXTERNAL, ResourceType.EXTERNAL), Action.READ),
new ResourceAction(new Resource(ResourceType.EXTERNAL, {input_source_type}), Action.READ)
]
`
when the inputSource based authorization feature is enabled, when it should instead be authorized against
`
[
new ResourceAction(new Resource(ResourceType.EXTERNAL, {input_source_type}), Action.READ)
]
`
* Frames: Ensure nulls are read as default values when appropriate.
Fixes a bug where LongFieldWriter didn't write a properly transformed
zero when writing out a null. This had no meaningful effect in SQL-compatible
null handling mode, because the field would get treated as a null anyway.
But it does have an effect in default-value mode: it would cause Long.MIN_VALUE
to get read out instead of zero.
Also adds NullHandling checks to the various frame-based column selectors,
allowing reading of nullable frames by servers in default-value mode.
* use new sampler features
* supprot kafka format
* update DQT, fix tests
* prefer non numeric formats
* fix input format step
* boost SQL data loader
* delete dimension in auto discover mode
* inline example specs
* feedback updates
* yeet the format into valueFormat when switching to kafka
* kafka format is now a toggle
* even better form layout
* rename
* Update api.md
I have created changes in api call of python according to latest version of requests 2.28.1 library. Along with this there are some irregularities between use of <your-instance> and <hostname> so I have tried to fix that also.
* Update api.md
made some changes in declaring USER and PASSWORD
Fixes#13837.
### Description
This change allows for input source type security in the native task layer.
To enable this feature, the user must set the following property to true:
`druid.auth.enableInputSourceSecurity=true`
The default value for this property is false, which will continue the existing functionality of needing authorization to write to the respective datasource.
When this config is enabled, the users will be required to be authorized for the following resource action, in addition to write permission on the respective datasource.
`new ResourceAction(new Resource(ResourceType.EXTERNAL, {INPUT_SOURCE_TYPE}, Action.READ`
where `{INPUT_SOURCE_TYPE}` is the type of the input source being used;, http, inline, s3, etc..
Only tasks that provide a non-default implementation of the `getInputSourceResources` method can be submitted when config `druid.auth.enableInputSourceSecurity=true` is set. Otherwise, a 400 error will be thrown.
* smarter nested column index utilization
changes:
* adds skipValueRangeIndexScale and skipValuePredicateIndexScale to ColumnConfig (e.g. DruidProcessingConfig) available as system config via druid.processing.indexes.skipValueRangeIndexScale and druid.processing.indexes.skipValuePredicateIndexScale
* NestedColumnIndexSupplier uses skipValueRangeIndexScale and skipValuePredicateIndexScale to multiply by the total number of rows to be processed to determine the threshold at which we should no longer consider using bitmap indexes because it will be too many operations
* Default values for skipValueRangeIndexScale and skipValuePredicateIndexScale have been initially set to 0.08, but are separate to allow independent tuning
* these are not documented on purpose yet because they are kind of hard to explain, the mainly exist to help conduct larger scale experiments than the jmh benchmarks used to derive the initial set of values
* these changes provide a pretty sweet performance boost for filter processing on nested columns
* Always use file sizes when determining batch ingest splits.
Main changes:
1) Update CloudObjectInputSource and its subclasses (S3, GCS,
Azure, Aliyun OSS) to use SplitHintSpecs in all cases. Previously, they
were only used for prefixes, not uris or objects.
2) Update ExternalInputSpecSlicer (MSQ) to consider file size. Previously,
file size was ignored; all files were treated as equal weight when
determining splits.
A side effect of these changes is that we'll make additional network
calls to find the sizes of objects when users specify URIs or objects
as opposed to prefixes. IMO, this is worth it because it's the only way
to respect the user's split hint and task assignment settings.
Secondary changes:
1) S3, Aliyun OSS: Use getObjectMetadata instead of listObjects to get
metadata for a single object. This is a simpler call that is also
expected to be less expensive.
2) Azure: Fix a bug where getBlobLength did not populate blob
reference attributes, and therefore would not actually retrieve the
blob length.
3) MSQ: Align dynamic slicing logic between ExternalInputSpecSlicer and
TableInputSpecSlicer.
4) MSQ: Adjust WorkerInputs to ensure there is always at least one
worker, even if it has a nil slice.
* Add msqCompatible to testGroupByWithImpossibleTimeFilter.
* Fix tests.
* Add additional tests.
* Remove unused stuff.
* Remove more unused stuff.
* Adjust thresholds.
* Remove irrelevant test.
* Fix comments.
* Fix bug.
* Updates.
* Add a new fault "QueryRuntimeError" to MSQ engine to capture native query errors.
* Fixed bug in MSQ fault tolerance where worker were being retried if `UnexpectedMultiValueDimensionException` was thrown.
* An exception from the query runtime with `org.apache.druid.query` as the package name is thrown as a QueryRuntimeError
changes:
* introduce ColumnFormat to separate physical storage format from logical type. ColumnFormat is now used instead of ColumnCapabilities to get column handlers for segment creation
* introduce new 'auto' type indexer and merger which produces a new common nested format of columns, which is the next logical iteration of the nested column stuff. Essentially this is an automatic type column indexer that produces the most appropriate column for the given inputs, making either STRING, ARRAY<STRING>, LONG, ARRAY<LONG>, DOUBLE, ARRAY<DOUBLE>, or COMPLEX<json>.
* revert NestedDataColumnIndexer, NestedDataColumnMerger, NestedDataColumnSerializer to their version pre #13803 behavior (v4) for backwards compatibility
* fix a bug in RoaringBitmapSerdeFactory if anything actually ever wrote out an empty bitmap using toBytes and then later tried to read it (the nerve!)