A low value of inSubQueryThreshold can cause queries with IN filter to plan as joins more commonly. However, some of these join queries may not get planned as IN filter on data nodes and causes significant perf regression.
* support groups windowing mode; which is a close relative of ranges (but not in the standard)
* all windows with range expressions will be executed wit it groups
* it will be 100% correct in case for both bounds its true that: isCurrentRow() || isUnBounded()
* this covers OVER ( ORDER BY COL )
* for other cases it will have some chances of getting correct results...
* Add ImmutableLookupMap for static lookups.
This patch adds a new ImmutableLookupMap, which comes with an
ImmutableLookupExtractor. It uses a fastutil open hashmap plus two
lists to store its data in such a way that forward and reverse
lookups can both be done quickly. I also observed footprint to be
somewhat smaller than Java HashMap + MapLookupExtractor for a 1 million
row lookup.
The main advantage, though, is that reverse lookups can be done much
more quickly than MapLookupExtractor (which iterates the entire map
for each call to unapplyAll). This speeds up the recently added
ReverseLookupRule (#15626) during SQL planning with very large lookups.
* Use in one more test.
* Fix benchmark.
* Object2ObjectOpenHashMap
* Fixes, and LookupExtractor interface update to have asMap.
* Remove commented-out code.
* Fix style.
* Fix import order.
* Add fastutil.
* Avoid storing Map entries.
* Reverse, pull up lookups in the SQL planner.
Adds two new rules:
1) ReverseLookupRule, which eliminates calls to LOOKUP by doing
reverse lookups.
2) AggregatePullUpLookupRule, which pulls up calls to LOOKUP above
GROUP BY, when the lookup is injective.
Adds configs `sqlReverseLookup` and `sqlPullUpLookup` to control whether
these rules fire. Both are enabled by default.
To minimize the chance of performance problems due to many keys mapping to
the same value, ReverseLookupRule refrains from reversing a lookup if there
are more keys than `inSubQueryThreshold`. The rationale for using this setting
is that reversal works by generating an IN, and the `inSubQueryThreshold`
describes the largest IN the user wants the planner to create.
* Add additional line.
* Style.
* Remove commented-out lines.
* Fix tests.
* Add test.
* Fix doc link.
* Fix docs.
* Add one more test.
* Fix tests.
* Logic, test updates.
* - Make FilterDecomposeConcatRule more flexible.
- Make CalciteRulesManager apply reduction rules til fixpoint.
* Additional tests, simplify code.
* CONCAT flattening, filter decomposition.
Flattening: CONCAT(CONCAT(x, y), z) is flattened to CONCAT(x, y, z). This
is especially useful for the || operator, which is a binary operator and
leads to non-flat CONCAT calls.
Filter decomposition: transforms CONCAT(x, '-', y) = 'a-b' into
x = 'a' AND y = 'b'.
* One more test.
* Fix two tests.
* Adjustments from review.
* Fix empty string problem, add tests.
I was looking into adding a rule to do this, and found that it was already
happening as part of Calcite's RexSimplify. So this patch simply adds some
tests to ensure that it continues to happen.
The initial step in optimizing segment metadata was to centralize the construction of datasource schema in the Coordinator (#14985). Subsequently, our goal is to eliminate the requirement for regularly executing queries to obtain segment schema information. This task encompasses addressing both realtime and finalized segments.
This modification specifically addresses the issue with realtime segments. Tasks will now routinely communicate the schema for realtime segments during the segment announcement process. The Coordinator will identify the schema alongside the segment announcement and subsequently update the schema for realtime segments in the metadata cache.
This PR enables the flag by default to queue excess query requests in the jetty queue. Still keeping the flag so that it can be turned off if necessary. But the flag will be removed in the future.
changes:
* ColumnIndexSelector now extends ColumnSelector. The only real implementation of ColumnIndexSelector, ColumnSelectorColumnIndexSelector, already has a ColumnSelector, so this isn't very disruptive
* removed getColumnNames from ColumnSelector since it was not used
* VirtualColumns and VirtualColumn getIndexSupplier method now needs argument of ColumnIndexSelector instead of ColumnSelector, which allows expression virtual columns to correctly recognize other virtual columns, fixing an issue which would incorrectly handle other virtual columns as non-existent columns instead
* fixed a bug with sql planner incorrectly not using expression filter for equality filters on columns with extractionFn and no virtual column registry
This logic error causes sarg expansion to happen twice for IN or NOT IN points.
It doesn't affect the final generated native query, because the
redundant expansions gets combined. But it slows down planning, especially
for large NOT IN.
FILTER_INTO_JOIN is mainly run along with the other rules with the Volcano planner; however if the query starts highly underdefined (join conditions in the where clauses) that generic query could give a lot of room for the other rules to play around with only enabled it for when the join uses subqueries for its inputs.
PROJECT_FILTER rule is not that useful. and could increase planning times by providing new plans. This problem worsened after we started supporting inner joins with arbitrary join conditions in https://github.com/apache/druid/pull/15302
- Rename ExprType to BaseType in CollectComparisons, since ExprType is a thing
that exists elsewhere.
- Remove unused "notInRexNodes" from SearchOperatorConversion.
* New handling for COALESCE, SEARCH, and filter optimization.
COALESCE is converted by Calcite's parser to CASE, which is largely
counterproductive for us, because it ends up duplicating expressions.
In the current code we end up un-doing it in our CaseOperatorConversion.
This patch has a different approach:
1) Add CaseToCoalesceRule to convert CASE back to COALESCE earlier, before
the Volcano planner runs, using CaseToCoalesceRule.
2) Add FilterDecomposeCoalesceRule to decompose calls like
"f(COALESCE(x, y))" into "(x IS NOT NULL AND f(x)) OR (x IS NULL AND f(y))".
This helps use indexes when available on x and y.
3) Add CoalesceLookupRule to push COALESCE into the third arg of LOOKUP.
4) Add a native "coalesce" function so we can convert 3+ arg COALESCE.
The advantage of this approach is that by un-doing the CASE to COALESCE
conversion earlier, we have flexibility to do more stuff with
COALESCE (like decomposition and pushing into LOOKUP).
SEARCH is an operator used internally by Calcite to represent matching
an argument against some set of ranges. This patch improves our handling
of SEARCH in two ways:
1) Expand NOT points (point "holes" in the range set) from SEARCH as
`!(a || b)` rather than `!a && !b`, which makes it possible to convert
them to a "not" of "in" filter later.
2) Generate those nice conversions for NOT points even if the SEARCH
is not composed of 100% NOT points. Without this change, a SEARCH
for "x NOT IN ('a', 'b') AND x < 'm'" would get converted like
"x < 'a' OR (x > 'a' AND x < 'b') OR (x > 'b' AND x < 'm')".
One of the steps we take when generating Druid queries from Calcite
plans is to optimize native filters. This patch improves this step:
1) Extract common ANDed predicates in ConvertSelectorsToIns, so we can
convert "(a && x = 'b') || (a && x = 'c')" into "a && x IN ('b', 'c')".
2) Speed up CombineAndSimplifyBounds and ConvertSelectorsToIns on
ORs with lots of children by adjusting the logic to avoid calling
"indexOf" and "remove" on an ArrayList.
3) Refactor ConvertSelectorsToIns to reduce duplicated code between the
handling for "selector" and "equals" filters.
* Not so final.
* Fixes.
* Fix test.
* Fix test.
Fixes#15072
Before this modification , the third parameter (timezone) require to be a Literal, it will throw a error when this parameter is column Identifier.
Updates ARRAY_OVERLAP to use the same ArrayContainsElement filter added in #15366 when filtering ARRAY typed columns so that it can also use indexes like ARRAY_CONTAINS.
This PR revives #14978 with a few more bells and whistles. Instead of an unconditional cross-join, we will now split the join condition such that some conditions are now evaluated post-join. To decide what sub-condition goes where, I have refactored DruidJoinRule class to extract unsupported sub-conditions. We build a postJoinFilter out of these unsupported sub-conditions and push to the join.
I think this is a problem as it discards the false return value when the putToKeyBuffer can't store the value because of the limit
Not forwarding the return value at that point may lead to the normal continuation here regardless something was not added to the dictionary like here
This PR fixes an issue where the grouping aggregator wrongly assumes that a key dimension is a virtual column and assigns a wrong name to it. This results in a mismatch between the dimensions that grouping aggregator sees and the dimension names that rows are aggregated on. And finally, grouping aggregator generates wrong result.
In pull request #14985, a bug was introduced where periodic refresh would skip rebuilding a datasource's schema after encountering a non-existent datasource. This resulted in remaining datasources having stale schema information.
This change addresses the bug and adds a unit test to validate the refresh mechanism's behaviour when a datasource is removed, and other datasources have schema changes.
In the current design, brokers query both data nodes and tasks to fetch the schema of the segments they serve. The table schema is then constructed by combining the schemas of all segments within a datasource. However, this approach leads to a high number of segment metadata queries during broker startup, resulting in slow startup times and various issues outlined in the design proposal.
To address these challenges, we propose centralizing the table schema management process within the coordinator. This change is the first step in that direction. In the new arrangement, the coordinator will take on the responsibility of querying both data nodes and tasks to fetch segment schema and subsequently building the table schema. Brokers will now simply query the Coordinator to fetch table schema. Importantly, brokers will still retain the capability to build table schemas if the need arises, ensuring both flexibility and resilience.
* Add system fields to input sources.
Main changes:
1) The SystemField enum defines system fields "__file_uri", "__file_path",
and "__file_bucket". They are associated with each input entity.
2) The SystemFieldInputSource interface can be added to any InputSource
to make it system-field-capable. It sets up serialization of a list
of configured "systemFields" in the JSON form of the input source, and
provides a method getSystemFieldValue for computing the value of each
system field. Cloud object, HDFS, HTTP, and Local now have this.
* Fix various LocalInputSource calls.
* Fix style stuff.
* Fixups.
* Fix tests and coverage.