Changes:
- Remove deprecated `DruidException` (old one) and `EntryExistsException`
- Use newly added comprehensive `DruidException` instead
- Update error message in `SqlMetadataStorageActionHandler` when max packet limit is violated.
- Factor out common code from several faults into `BaseFault`.
- Slightly update javadoc in `DruidException` to render it correctly
- Remove unused classes `SegmentToMove`, `SegmentToDrop`
- Move `ServletResourceUtils` from module `druid-processing` to `druid-server`
- Add utility method to build error Response from `DruidException`.
changes:
* fix issues with array_contains and array_overlap with null left side arguments
* modify singleThreaded stuff to allow optimizing Function similar to how we do for ExprMacro - removed SingleThreadSpecializable in favor of default impl of asSingleThreaded on Expr with clear javadocs that most callers shouldn't be calling it directly and should be using Expr.singleThreaded static method which uses a shuttle and delegates to asSingleThreaded instead
* add optimized 'singleThreaded' versions of array_contains and array_overlap
* add mv_harmonize_nulls native expression to use with MV_CONTAINS and MV_OVERLAP to allow them to behave consistently with filter rewrites, coercing null and [] into [null]
* fix bug with casting rhs argument for native array_contains and array_overlap expressions
ConcurrentGrouper kind of misuses ThreadLocal to hold a SpillingGrouper, and never calls remove() on it, which can result in large amounts of heap being retained as weak references even after grouping is finished. This PR calls keySerde.reset() on all of the Grouper.close() implementations that have a KeySerde and should free up a bunch of space that is no longer needed.
The previously used GCS API client library returned last update time for objects directly in milliseconds. The new library returns it in OffsetDateTime format which was being converted to seconds and stored against the object. This fix converts the time back to ms before storing it.
Changes:
Improve `SqlSegmentsMetadataManager`
- Break the loop in `populateUsedStatusLastUpdated` before going to sleep if there are no more segments to update
- Add comments and clean up logs
Refactor `SqlSegmentsMetadataManagerTest`
- Merge `SqlSegmentsMetadataManagerEmptyTest` into this test
- Add method `testPollEmpty`
- Shave a few seconds off of the tests by reducing poll duration
- Simplify creation of test segments
- Some renames here and there
- Remove unused methods
- Move `TestDerbyConnector.allowLastUsedFlagToBeNull` to this class
Other minor changes
- Add javadoc to `NoneShardSpec`
- Use lambda in `SqlSegmentMetadataPublisher`
While converting Sequence<ScanResultValue> to Sequence<Frames>, when maxSubqueryBytes is enabled, we batch the results to prevent creating a single frame per ScanResultValue. Batching requires peeking into the actual value, and checking if the row signature of the scan result’s value matches that of the previous value.
Since we can do this indefinitely (in the worst case all of them have the same signature), we keep fetching them and accumulating them in a list (on the heap). We don’t really know how much to batch before we actually write the value as frames.
The PR modifies the batching logic to not accumulate the results in an intermediary list
* `Expr#singleThreaded` which creates a singleThreaded version of the actual expression (caching ExprEval is allowed)
* `Expr#makeSingleThreaded` to make a whole subtree of expressions 'singleThreaded' - uses `Shuttle` to create the new expression tree
* `ConstantExpr#singleThreaded` creates a specialized `ConstantExpr` which does cache the `ExprEval`
* some `@Immutable` annotations were added to make it more likely to notice that there might be something off if a similar change will be made around here for some reason
Since #15175, the javadoc for ReadableFieldPointer is somewhat out of date. It says that
the pointer only points to the beginning of the field, but this is no longer true. This
patch updates the javadoc to be more accurate.
allow a hashjoin result to be converted to RowsAndColumns
added StorageAdapterRowsAndColumns
fix incorrect isConcrete() return values during early phase of planning
* Move retries into DataSegmentPusher implementations.
The individual implementations know better when they should and should
not retry. They can also generate better error messages.
The inspiration for this patch was a situation where EntityTooLarge was
generated by the S3DataSegmentPusher, and retried uselessly by the
retry harness in PartialSegmentMergeTask.
* Fix missing var.
* Adjust imports.
* Tests, comments, style.
* Remove unused import.
* Rows.objectToNumber: Accept decimals with output type LONG.
PR #15615 added an optimization to avoid parsing numbers twice in cases
where we know that they should definitely be longs or
definitely be doubles. Rather than try parsing as long first, and then
try parsing as double, it would use only the parsing routine specific to
the requested outputType.
This caused a bug: previously, we would accept decimals like "1.0" or
"1.23" as longs, by truncating them to "1". After that patch, we would
treat such decimals as nulls when the outputType is set to LONG.
This patch retains the short-circuit for doubles: if outputType is
DOUBLE, we only parse the string as a double. But for outputType LONG,
this patch restores the old behavior: try to parse as long first,
then double.
* cooler cursor filter processing allowing much smart utilization of indexes by feeding selectivity forward, with implementations for range and predicate based filters
* added new method Filter.makeFilterBundle which cursors use to get indexes and matchers for building offsets
* AND filter partitioning is now pushed all the way down, even to nested AND filters
* vector engine now uses same indexed base value matcher strategy for OR filters which partially support indexes
The code in the groupBy engine and the topN engine assume that the dimensions are comparable and can call dimA.compareTo(dimB) to sort the dimensions and group them together.
This works well for the primitive dimensions, because they are Comparable, however falls apart when the dimensions can be arrays (or in future scenarios complex columns). In cases when the dimensions are not comparable, Druid resorts to having a wrapper type ComparableStringArray and ComparableList, which is a Comparable, based on the list comparator.
Fixes a bug when the undocumented castToType parameter is set on 'auto' column schema, which should have been using the 'nullable' comparator to allow null values to be present when merging columns, but wasn't which would lead to null pointer exceptions. Also fixes an issue I noticed while adding tests that if 'FLOAT' type was specified for the castToType parameter it would be an exception because that type is not expected to be present, since 'auto' uses the native expressions to determine the input types and expressions don't have direct support for floats, only doubles.
In the future I should probably split this functionality out of the 'auto' schema (maybe even have a simpler version of the auto indexer dedicated to handling non-nested data) but still have the same results of writing out the newer 'nested common format' columns used by 'auto', but I haven't taken that on in this PR.
* Globally disable AUTO_CLOSE_JSON_CONTENT.
This JsonGenerator feature is on by default. It causes problems with code
like this:
try (JsonGenerator jg = ...) {
jg.writeStartArray();
for (x : xs) {
jg.writeObject(x);
}
jg.writeEndArray();
}
If a jg.writeObject call fails due to some problem with the data it's
reading, the JsonGenerator will write the end array marker automatically
when closed as part of the try-with-resources. If the generator is writing
to a stream where the reader does not have some other mechanism to realize
that an exception was thrown, this leads the reader to believe that the
array is complete when it actually isn't.
Prior to this patch, we disabled AUTO_CLOSE_JSON_CONTENT for JSON-wrapped
SQL result formats in #11685, which fixed an issue where such results
could be erroneously interpreted as complete. This patch fixes a similar
issue with task reports, and all similar issues that may exist elsewhere,
by disabling the feature globally.
* Update test.
* Rework ExprMacro base classes to simplify implementations.
This patch removes BaseScalarUnivariateMacroFunctionExpr, adds
BaseMacroFunctionExpr at the top of the hierarchy (a suitable base class
for ExprMacros that take either arrays or scalars), and adds an
implementation for "visit" to BaseMacroFunctionExpr.
The effect on implementations is generally cleaner code:
- Exprs no longer need to implement "visit".
- Exprs no longer need to implement "stringify", even if they don't
use all of their args at runtime, because BaseMacroFunctionExpr has
access to even unused args.
- Exprs that accept arrays can extend BaseMacroFunctionExpr and
inherit a bunch of useful methods. The only one they need to
implement themselves that scalar exprs don't is "supplyAnalyzeInputs".
* Make StringDecodeBase64UTFExpression a static class.
* Remove unused import.
* Formatting, annotation changes.
Executing single value correlated queries will throw an exception today since single_value function is not available in druid.
With these added classes, this provides druid, the capability to plan and run such queries.
During ingestion, incremental segments are created in memory for the different time chunks and persisted to disk when certain thresholds are reached (max number of rows, max memory, incremental persist period etc). In the case where there are a lot of dimension and metrics (1000+) it was observed that the creation/serialization of incremental segment file format for persistence and persisting the file took a while and it was blocking ingestion of new data. This affected the real-time ingestion. This serialization and persistence can be parallelized across the different time chunks. This update aims to do that.
The patch adds a simple configuration parameter to the ingestion tuning configuration to specify number of persistence threads. The default value is 1 if it not specified which makes it the same as it is today.
This PR wires up ValueIndexes and ArrayElementIndexes for nested arrays, ValueIndexes for nested long and double columns, and fixes a handful of bugs I found after adding nested columns to the filter test gauntlet.
introduce checks to ensure that window frame is supported
added check to ensure that no expressions are set as bounds
added logic to detect following/following like cases - described in Window function fails to demarcate if 2 following are used #15739
currently RANGE frames are only supported correctly if both endpoints are unbounded or current row Offset based window range support #15767
added windowingStrictValidation context key to provide a way to override the check
Adds a set of benchmark queries for measuring the planning time with the IN operator. Current results indicate that with the recent optimizations, the IN planning time with 100K expressions in the IN clause is just 3s and with 1M is 46s. For IN clause paired with OR <col>=<val> expr, the numbers are 10s and 155s for 100K and 1M, resp.
Nested columns maintain a null value bitmap for which rows are nulls, however I forgot to wire up a ColumnIndexSupplier to nested columns when filtering the 'raw' data itself, so these were not able to be used. This PR fixes that by adding a supplier that can return NullValueIndex to be used by the NullFilter, which should speed up is null and is not null filters on json columns.
I haven't spent the time to measure the difference yet, but I imagine it should be a significant speed increase.
Note that I only wired this up if druid.generic.useDefaultValueForNull=false (sql compatible mode), the reason being that the SQL planner still uses selector filter, which is unable to properly handle any arrays or complex types (including json, even checking for nulls). The reason for this is so that the behavior is consistent between using the index and using the value matcher, otherwise we get into a situation where using the index has correct behavior but using the value matcher does not, which I was trying to avoid.
* Possibly stabilize intellij-inspections
* remove `integration-tests-ex/cases` from excluded projects from initial build
* enable ErrorProne's `CheckedExceptionNotThrown` to get earlier errors than intellij-inspections
* fix ddsketch pom.xml
* fix spellcheck
* New: Add DDSketch-Druid extension
- Based off of http://www.vldb.org/pvldb/vol12/p2195-masson.pdf and uses
the corresponding https://github.com/DataDog/sketches-java library
- contains tests for post building and using aggregation/post
aggregation.
- New aggregator: `ddSketch`
- New post aggregators: `quantileFromDDSketch` and
`quantilesFromDDSketch`
* Fixing easy CodeQL warnings/errors
* Fixing docs, and dependencies
Also moved aggregator ids to AggregatorUtil and PostAggregatorIds
* Adding more Docs and better null/empty handling for aggregators
* Fixing docs, and pom version
* DDSketch documentation format and wording
A low value of inSubQueryThreshold can cause queries with IN filter to plan as joins more commonly. However, some of these join queries may not get planned as IN filter on data nodes and causes significant perf regression.
### Description
Our Kinesis consumer works by using the [GetRecords API](https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html) in some number of `fetchThreads`, each fetching some number of records (`recordsPerFetch`) and each inserting into a shared buffer that can hold a `recordBufferSize` number of records. The logic is described in our documentation at: https://druid.apache.org/docs/27.0.0/development/extensions-core/kinesis-ingestion/#determine-fetch-settings
There is a problem with the logic that this pr fixes: the memory limits rely on a hard-coded “estimated record size” that is `10 KB` if `deaggregate: false` and `1 MB` if `deaggregate: true`. There have been cases where a supervisor had `deaggregate: true` set even though it wasn’t needed, leading to under-utilization of memory and poor ingestion performance.
Users don’t always know if their records are aggregated or not. Also, even if they could figure it out, it’s better to not have to. So we’d like to eliminate the `deaggregate` parameter, which means we need to do memory management more adaptively based on the actual record sizes.
We take advantage of the fact that GetRecords doesn’t return more than 10MB (https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html ):
This pr:
eliminates `recordsPerFetch`, always use the max limit of 10000 records (the default limit if not set)
eliminate `deaggregate`, always have it true
cap `fetchThreads` to ensure that if each fetch returns the max (`10MB`) then we don't exceed our budget (`100MB` or `5% of heap`). In practice this means `fetchThreads` will never be more than `10`. Tasks usually don't have that many processors available to them anyway, so in practice I don't think this will change the number of threads for too many deployments
add `recordBufferSizeBytes` as a bytes-based limit rather than records-based limit for the shared queue. We do know the byte size of kinesis records by at this point. Default should be `100MB` or `10% of heap`, whichever is smaller.
add `maxBytesPerPoll` as a bytes-based limit for how much data we poll from shared buffer at a time. Default is `1000000` bytes.
deprecate `recordBufferSize`, use `recordBufferSizeBytes` instead. Warning is logged if `recordBufferSize` is specified
deprecate `maxRecordsPerPoll`, use `maxBytesPerPoll` instead. Warning is logged if maxRecordsPerPoll` is specified
Fixed issue that when the record buffer is full, the fetchRecords logic throws away the rest of the GetRecords result after `recordBufferOfferTimeout` and starts a new shard iterator. This seems excessively churny. Instead, wait an unbounded amount of time for queue to stop being full. If the queue remains full, we’ll end up right back waiting for it after the restarted fetch.
There was also a call to `newQ::offer` without check in `filterBufferAndResetBackgroundFetch`, which seemed like it could cause data loss. Now checking return value here, and failing if false.
### Release Note
Kinesis ingestion memory tuning config has been greatly simplified, and a more adaptive approach is now taken for the configuration. Here is a summary of the changes made:
eliminates `recordsPerFetch`, always use the max limit of 10000 records (the default limit if not set)
eliminate `deaggregate`, always have it true
cap `fetchThreads` to ensure that if each fetch returns the max (`10MB`) then we don't exceed our budget (`100MB` or `5% of heap`). In practice this means `fetchThreads` will never be more than `10`. Tasks usually don't have that many processors available to them anyway, so in practice I don't think this will change the number of threads for too many deployments
add `recordBufferSizeBytes` as a bytes-based limit rather than records-based limit for the shared queue. We do know the byte size of kinesis records by at this point. Default should be `100MB` or `10% of heap`, whichever is smaller.
add `maxBytesPerPoll` as a bytes-based limit for how much data we poll from shared buffer at a time. Default is `1000000` bytes.
deprecate `recordBufferSize`, use `recordBufferSizeBytes` instead. Warning is logged if `recordBufferSize` is specified
deprecate `maxRecordsPerPoll`, use `maxBytesPerPoll` instead. Warning is logged if maxRecordsPerPoll` is specified