* Add supervisor /resetOffsets API.
- Add a new endpoint /druid/indexer/v1/supervisor/<supervisorId>/resetOffsets
which accepts DataSourceMetadata as a body parameter.
- Update logs, unit tests and docs.
* Add a new interface method for backwards compatibility.
* Rename
* Adjust tests and javadocs.
* Use CoreInjectorBuilder instead of deprecated makeInjectorWithModules
* UT fix
* Doc updates.
* remove extraneous debugging logs.
* Remove the boolean setting; only ResetHandle() and resetInternal()
* Relax constraints and add a new ResetOffsetsNotice; cleanup old logic.
* A separate ResetOffsetsNotice and some cleanup.
* Minor cleanup
* Add a check & test to verify that sequence numbers are only of type SeekableStreamEndSequenceNumbers
* Add unit tests for the no op implementations for test coverage
* CodeQL fix
* checkstyle from merge conflict
* Doc changes
* DOCUSAURUS code tabs fix. Thanks, Brian!
There are two type of DeterminePartitionsJob:
- When the input data is not assume grouped, there may be duplicate rows.
In this case, two MR jobs are launched. The first one do group job to remove duplicate rows.
And a second one to perform global sorting to find lower and upper bound for target segments.
- When the input data is assume grouped, we only need to launch the global sorting
MR job to find lower and upper bound for segments.
Sampling strategy:
- If the input data is assume grouped, sample by random at the mapper side of the global sort mr job.
- If the input data is not assume grouped, sample at the mapper of the group job. Use hash on time
and all dimensions and mod by sampling factor to sample, don't use random method because there
may be duplicate rows.
### Description
Added the following metrics, which are calculated from the `KillUnusedSegments` coordinatorDuty
`"killTask/availableSlot/count"`: calculates the number remaining task slots available for auto kill
`"killTask/maxSlot/count"`: calculates the maximum number of tasks available for auto kill
`"killTask/task/count"`: calculates the number of tasks submitted by auto kill.
#### Release note
NEW: metrics added for auto kill
`"killTask/availableSlot/count"`: calculates the number remaining task slots available for auto kill
`"killTask/maxSlot/count"`: calculates the maximum number of tasks available for auto kill
`"killTask/task/count"`: calculates the number of tasks submitted by auto kill.
* Updates `org.apache.jclouds:*` from 1.9.1 to 2.0.3
* Pin jclouds to 2.0.x since 2.1.x requires Guava 18+
* replace easymock with mockito
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
The current version of jackson-databind is flagged for vulnerabilities CVE-2020-28491 (Although cbor format is not used in druid), CVE-2020-36518 (Seems genuine as deeply nested json in can cause resource exhaustion). Updating the dependency to the latest version 2.12.7 to fix these vulnerabilities.
Changes:
* Add and invoke `StateListener` when state changes in `KubernetesPeonLifecycle`
* Report `task/pending/time` metric in `KubernetesTaskRunner` when state moves to RUNNING
* Minimize PostAggregator computations
Since a change back in 2014, the topN query has been computing
all PostAggregators on all intermediate responses from leaf nodes
to brokers. This generates significant slow downs for queries
with relatively expensive PostAggregators. This change rewrites
the query that is pushed down to only have the minimal set of
PostAggregators such that it is impossible for downstream
processing to do too much work. The final PostAggregators are
applied at the very end.
Changes:
- Fix race condition in KubernetesTaskRunner introduced by #14435
- Perform addition and removal from map inside a synchronized block
- Update tests
changes:
* new filters that preserve match value typing to better handle filtering different column types
* sql planner uses new filters by default in sql compatible null handling mode
* remove isFilterable from column capabilities
* proper handling of array filtering, add array processor to column processors
* javadoc for sql test filter functions
* range filter support for arrays, tons more tests, fixes
* add dimension selector tests for mixed type roots
* support json equality
* rename semantic index maker thingys to mostly have plural names since they typically make many indexes, e.g. StringValueSetIndex -> StringValueSetIndexes
* add cooler equality index maker, ValueIndexes
* fix missing string utf8 index supplier
* expression array comparator stuff
This adds a new contrib extension: druid-iceberg-extensions which can be used to ingest data stored in Apache Iceberg format. It adds a new input source of type iceberg that connects to a catalog and retrieves the data files associated with an iceberg table and provides these data file paths to either an S3 or HDFS input source depending on the warehouse location.
Two important dependencies associated with Apache Iceberg tables are:
Catalog : This extension supports reading from either a Hive Metastore catalog or a Local file-based catalog. Support for AWS Glue is not available yet.
Warehouse : This extension supports reading data files from either HDFS or S3. Adapters for other cloud object locations should be easy to add by extending the AbstractInputSourceAdapter.
Apache Druid brings multiple direct and transitive dependencies that are affected by plethora of CVEs.
This PR attempts to update all the dependencies that did not require code refactoring.
This PR modifies pom files, license file and OWASP Dependency Check suppression file.
* Fix EarliestLatestBySqlAggregator signature; Include function name for all signatures.
* Single quote function signatures, space between args and remove \n.
* fixup UT assertion
In this PR, we are enhancing KafkaEmitter, to emit metadata about published segments (SegmentMetadataEvent) into a Kafka topic. This segment metadata information that gets published into Kafka, can be used by any other downstream services to query Druid intelligently based on the segments published. The segment metadata gets published into kafka topic in json string format similar to other events.
It was found that several supported tasks / input sources did not have implementations for the methods used by the input source security feature, causing these tasks and input sources to fail when used with this feature. This pr adds the needed missing implementations. Also securing the sampling endpoint with input source security, when enabled.
* Be able to load segments on Peons
This change introduces a new config on WorkerConfig
that indicates how many bytes of each storage
location to use for storage of a task. Said config
is divided up amongst the locations and slots
and then used to set TaskConfig.tmpStorageBytesPerTask
The Peons use their local task dir and
tmpStorageBytesPerTask as their StorageLocations for
the SegmentManager such that they can accept broadcast
segments.
* queue tasks if all slots in use
* Declare hamcrest-core dependency
* Use AtomicBoolean for shutdown requested
* Use AtomicReference for peon lifecycle state
* fix uninitialized read error
* fix indentations
* Make tasks protected
* fix KubernetesTaskRunnerConfig deserialization
* ensure k8s task runner max capacity is Integer.MAX_VALUE
* set job duration as task status duration
* Address pr comments
---------
Co-authored-by: George Shiqi Wu <george.wu@imply.io>
This PR fixes an issue when using 'auto' encoded LONG typed columns and the 'vectorized' query engine. These columns use a delta based bit-packing mechanism, and errors in the vectorized reader would cause it to incorrectly read column values for some bit sizes (1 through 32 bits). This is a regression caused by #11004, which added the optimized readers to improve performance, so impacts Druid versions 0.22.0+.
While writing the test I finally got sad enough about IndexSpec not having a "builder", so I made one, and switched all the things to use it. Apologies for the noise in this bug fix PR, the only real changes are in VSizeLongSerde, and the tests that have been modified to cover the buggy behavior, VSizeLongSerdeTest and ExpressionVectorSelectorsTest. Everything else is just cleanup of IndexSpec usage.
Hadoop 2 often causes red security scans on Druid distribution because of the dependencies it brings. We want to move away from Hadoop 2 and provide Hadoop 3 distribution available. Switch druid to building with Hadoop 3 by default. Druid will still be compatible with Hadoop 2 and users can build hadoop-2 compatible distribution using hadoop2 profile.
* return task status reported by peon
* Write TaskStatus to file in AbstractTask.cleanUp
* Get TaskStatus from task log
* Fix merge conflicts in AbstractTaskTest
* Add unit tests for TaskLogPusher, TaskLogStreamer, NoopTaskLogs to satisfy code coverage
* Add license headerss
* Fix style
* Remove unknown exception declarations
* Make the tasks run with only a single directory
There was a change that tried to get indexing to run on multiple disks
It made a bunch of changes to how tasks run, effectively hiding the
"safe" directory for tasks to write files into from the task code itself
making it extremely difficult to do anything correctly inside of a task.
This change reverts those changes inside of the tasks and makes it so that
only the task runners are the ones that make decisions about which
mount points should be used for storing task-related files.
It adds the config druid.worker.baseTaskDirs which can be used by the
task runners to know which directories they should schedule tasks inside of.
The TaskConfig remains the authoritative source of configuration for where
and how an individual task should be operating.