* Fixing failing compaction/parallel index jobs during upgrade due to new actions not available on the overlord.
* Fixing build
* Removing extra space.
* Fixing json getter.
* Review comments.
* Fix NPE caused by realtime segment closing race, fix possible missing-segment retry bug.
Fixes#12168, by returning empty from FireHydrant when the segment is
swapped to null. This causes the SinkQuerySegmentWalker to use
ReportTimelineMissingSegmentQueryRunner, which causes the Broker to look
for the segment somewhere else.
In addition, this patch changes SinkQuerySegmentWalker to acquire references
to all hydrants (subsegments of a sink) at once, and return a
ReportTimelineMissingSegmentQueryRunner if *any* of them could not be acquired.
I suspect, although have not confirmed, that the prior behavior could lead to
segments being reported as missing even though results from some hydrants were
still included.
* Some more test coverage.
* Make numCorePartitions as 0 in the TombstoneShardSpec.
* fix up test
* Add tombstone core partition tests
* review comment
* Need to register the test shard type to make jackson happy
In pull request #14985, a bug was introduced where periodic refresh would skip rebuilding a datasource's schema after encountering a non-existent datasource. This resulted in remaining datasources having stale schema information.
This change addresses the bug and adds a unit test to validate the refresh mechanism's behaviour when a datasource is removed, and other datasources have schema changes.
* Add a unit test that fails when used segments with too many intervals are retrieved.
- This is a failing test case that needs to be ignored.
* Batch the intervals (use 100 as it's consistent with batching in other places).
* move the filtering inside the batch
* Account for limit cross the batch splits.
* Adjustments
* Fixup and add tests
* small refactor
* add more tests.
* remove wrapper.
* Minor edits
* assert out of range
In the current design, brokers query both data nodes and tasks to fetch the schema of the segments they serve. The table schema is then constructed by combining the schemas of all segments within a datasource. However, this approach leads to a high number of segment metadata queries during broker startup, resulting in slow startup times and various issues outlined in the design proposal.
To address these challenges, we propose centralizing the table schema management process within the coordinator. This change is the first step in that direction. In the new arrangement, the coordinator will take on the responsibility of querying both data nodes and tasks to fetch segment schema and subsequently building the table schema. Brokers will now simply query the Coordinator to fetch table schema. Importantly, brokers will still retain the capability to build table schemas if the need arises, ensuring both flexibility and resilience.
* Use filters for pruning properly for hash-joins.
Native used them too aggressively: it might use filters for the RHS
to prune the LHS. MSQ used them not at all. Now, both use them properly,
pruning based on base (LHS) columns only.
* Fix tests.
* Fix style.
* Clear filterFields too.
* Update.
* Add system fields to input sources.
Main changes:
1) The SystemField enum defines system fields "__file_uri", "__file_path",
and "__file_bucket". They are associated with each input entity.
2) The SystemFieldInputSource interface can be added to any InputSource
to make it system-field-capable. It sets up serialization of a list
of configured "systemFields" in the JSON form of the input source, and
provides a method getSystemFieldValue for computing the value of each
system field. Cloud object, HDFS, HTTP, and Local now have this.
* Fix various LocalInputSource calls.
* Fix style stuff.
* Fixups.
* Fix tests and coverage.
ServiceClientImpl logs the cause of every retry, even though we are retrying the connection attempt. This leads to slight pollution in the logs because a lot of the time, the reason for retrying is the same. This is seen primarily in MSQ, when the worker task hasn't launched yet however controller attempts to connect to the worker task, which can lead to scary-looking messages (with INFO log level), even though they are normal.
This PR changes the logging logic to log every 10 (arbitrary number) retries instead of every retry, to reduce the pollution of the logs.
Note: If there are no retries left, the client returns an exception, which would get thrown up by the caller, and therefore this change doesn't hide any important information.
* Use min of scheduler threads and server threads for subquery guardrails.
This allows more memory to be used for subqueries when the query scheduler
is configured to limit queries below the number of server threads. The patch
also refactors the code so SubqueryGuardrailHelper is provided by a Guice
Provider rather than being created by ClientQuerySegmentWalker, to achieve
better separation of concerns.
* Exclude provider from coverage.
* Frames: consider writing singly-valued column when input column hasMultipleValues is UNKNOWN.
Prior to this patch, columnar frames would always write multi-valued columns if
the input column had hasMultipleValues = UNKNOWN. This had the effect of flipping
UNKNOWN to TRUE when copying data into frames, which is problematic because TRUE
causes expressions to assume that string inputs must be treated as arrays.
We now avoid this by flipping UNKNOWN to FALSE if no multi-valuedness
is encountered, and flipping it to TRUE if multi-valuedness is encountered.
* Add regression test case.
Currently the inter Druid communication via rest endpoints is based on json formatted payload. Upon parsing error, there is only a generic exception stating expected json token type and current json token type. There is no detailed error log about the content of the payload causing the violation.
In the micro-service world, the trend is to deploy the Druid servers in k8 with the mesh network. Often the istio proxy or other proxies is used to intercept the network connection between Druid servers. The proxy may give error messages for various reasons. These error messages are not expected by the json parser. The generic error message from Druid can be very misleading as the user may think the message is based on the response from the other Druid server.
For example, this is an example of mysterious error message
QueryInterruptedException{msg=Next token wasn't a START_ARRAY, was[VALUE_STRING] from url[http://xxxxx:8088/druid/v2/], code=Unknown exception, class=org.apache.druid.java.util.common.IAE, host=xxxxx:8088}"
While the context of the message is the following from the proxy when it can't tunnel the network connection.
pstream connect error or disconnect/reset before header
So this very simple PR is just to enhance the logging and get the real underlying message printed out. This would save a lot of head scratching time if Druid is deployed with mesh network.
Co-authored-by: Kai Sun <kai.sun@salesforce.com>
This PR aims to add the capabilities to:
1. Fetch the realtime segment metadata from the coordinator server view,
2. Adds the ability for workers to query indexers, similar to how brokers do the same for native queries.
This PR updates the library used for Memcached client to AWS Elasticache Client : https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-java
This enables us to use the option of encrypting data in transit:
Amazon ElastiCache for Memcached now supports encryption of data in transit
For clusters running the Memcached engine, ElastiCache supports Auto Discovery—the ability for client programs to automatically identify all of the nodes in a cache cluster, and to initiate and maintain connections to all of these nodes.
Benefits of Auto Discovery - Amazon ElastiCache
AWS has forked spymemcached 2.12.1, and has since added all the patches included in 2.12.2 and 2.12.3 as part of the 1.2.0 release. So, this can now be considered as an equivalent drop-in replacement.
GitHub - awslabs/aws-elasticache-cluster-client-memcached-for-java: Amazon ElastiCache Cluster Client for Java - enhanced library to connect to ElastiCache clusters.
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/elasticache/AmazonElastiCacheClient.html#AmazonElastiCacheClient--
How to enable TLS with Elasticache
On server side:
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/in-transit-encryption-mc.html#in-transit-encryption-enable-existing-mc
On client side:
GitHub - awslabs/aws-elasticache-cluster-client-memcached-for-java: Amazon ElastiCache Cluster Client for Java - enhanced library to connect to ElastiCache clusters.
The aggregators had incorrect types for getResultType when shouldFinalze
is false. They had the finalized type, but they should have had the
intermediate type.
Also includes a refactor of how ExprMacroTable is handled in tests, to make
it easier to add tests for this to the MSQ module. The bug was originally
noticed because the incorrect result types caused MSQ queries with DS_HLL
to behave erratically.
Changes:
- Add task context parameter `taskLockType`. This determines the type of lock used by a batch task.
- Add new task actions for transactional replace and append of segments
- Add methods StorageCoordinator.commitAppendSegments and commitReplaceSegments
- Upgrade segments to appropriate versions when performing replace and append
- Add new metadata table `upgradeSegments` to track segments that need to be upgraded
- Add tests
- Add `KillTaskReport` that contains stats for `numSegmentsKilled`,
`numBatchesProcessed`, `numSegmentsMarkedAsUnused`
- Fix bug where exception message had no formatter but was was still being passed some args.
- Add some comments regarding deprecation of `markAsUnused` flag.
This commit pulls out some changes from #14407 to simplify that PR.
Changes:
- Rename `IndexerMetadataStorageCoordinator.announceHistoricalSegments` to `commitSegments`
- Rename the overloaded method to `commitSegmentsAndMetadata`
- Fix some typos
When materializing the results as frames, we defer the creation of the frames in ScanQueryQueryToolChest, which passes through the catch-all block reserved for catching cases when we don't have the complete row signature in the query (and falls back to the old code).
This PR aims to resolve it by adding the frame generation code to the try-catch block we have at the outer level.
Changes:
- Move following configs from `CliCoordinator` to `DruidCoordinatorConfig`:
- `druid.coordinator.kill.on`
- `druid.coordinator.kill.pendingSegments.on`
- `druid.coordinator.kill.supervisors.on`
- `druid.coordinator.kill.rules.on`
- `druid.coordinator.kill.audit.on`
- `druid.coordinator.kill.datasource.on`
- `druid.coordinator.kill.compaction.on`
- In the Coordinator style used by historical management duties, always instantiate all
the metadata cleanup duties but execute only if enabled. In the existing code, they are
instantiated only when enabled by using optional binding with Guice.
- Add a wrapper `MetadataManager` which contains handles to all the different
metadata managers for rules, supervisors, segments, etc.
- Add a `CoordinatorConfigManager` to simplify read and update of coordinator configs
- Remove persistence related methods from `CoordinatorCompactionConfig` and
`CoordinatorDynamicConfig` as these are config classes.
- Remove annotations `@CoordinatorIndexingServiceDuty`,
`@CoordinatorMetadataStoreManagementDuty`
changes:
* add back nested column v4 serializers
* 'json' schema by default still uses the newer 'nested common format' used by 'auto', but now has an optional 'formatVersion' property which can be specified to override format versions on native ingest jobs
* add system config to specify default column format stuff, 'druid.indexing.formats', and property 'druid.indexing.formats.nestedColumnFormatVersion' to specify system level preferred nested column format for friendly rolling upgrades from versions which do not support the newer 'nested common format' used by 'auto'
Changes:
- Add new metric `kill/pendingSegments/count` with dimension `dataSource`
- Add tests for `KillStalePendingSegments`
- Reduce no-op logs that spit out for each datasource even when no pending
segments have been deleted. This can get particularly noisy at low values of `indexingPeriod`.
- Refactor the code in `KillStalePendingSegments` for readability and add javadocs
A new monitor SubqueryCountStatsMonitor which emits the metrics corresponding to the subqueries and their execution is now introduced. Moreover, the user can now also use the auto mode to automatically set the number of bytes available per query for the inlining of its subquery's results.
Currently, after an MSQ query, the web console is responsible for waiting for the segments to load. It does so by checking if there are any segments loading into the datasource ingested into, which can cause some issues, like in cases where the segments would never be loaded, or would end up waiting for other ingests as well.
This PR shifts this responsibility to the controller, which would have the list of segments created.
Changes:
[A] Remove config `decommissioningMaxPercentOfMaxSegmentsToMove`
- It is a complicated config 😅 ,
- It is always desirable to prioritize move from decommissioning servers so that
they can be terminated quickly, so this should always be 100%
- It is already handled by `smartSegmentLoading` (enabled by default)
[B] Remove config `maxNonPrimaryReplicantsToLoad`
This was added in #11135 to address two requirements:
- Prevent coordinator runs from getting stuck assigning too many segments to historicals
- Prevent load of replicas from competing with load of unavailable segments
Both of these requirements are now already met thanks to:
- Round-robin segment assignment
- Prioritization in the new coordinator
- Modifications to `replicationThrottleLimit`
- `smartSegmentLoading` (enabled by default)
Changes:
- Make ServiceMetricEvent.Builder extend ServiceEventBuilder<ServiceMetricEvent>
and thus convert it to a plain builder rather than a builder of builder.
- Add methods setCreatedTime , setMetricAndValue to the builder
Changes:
- Reduce log level of some coordinator stats, which only denote normal coordinator operation.
These stats are still emitted and can be logged by setting debugDimensions in the coordinator
dynamic config.
- Initialize SegmentLoadingConfig only for historical management duties. This config is not
needed in other duties and initializing it creates logs which are misleading.
Changes
- Increase value of `replicationThrottleLimit` computed by `smartSegmentLoading` from
2% to 5% of total number of used segments.
- Assign replicas to a tier even when some replicas are already being loaded in that tier
- Limit the total number of replicas in load queue at start of run + replica assignments in
the run to the `replicationThrottleLimit`.
i.e. for every tier,
num loading replicas at start of run + num replicas assigned in run <= replicationThrottleLimit
Changes:
- Determine the default value of balancerComputeThreads based on number of
coordinator cpus rather than number of segments. Even if the number of segments
is low and we create more balancer threads, it doesn't hurt the system as threads
would mostly be idle.
- Remove unused field from SegmentLoadQueueManager
Expected values:
- Clusters with ~1M segments typically work with Coordinators having 16 cores or more.
This would give us 8 balancer threads, which is the same as the current maximum.
- On small clusters, even a single thread is enough to do the required balancing work.
### Description
This change enables the `KillUnusedSegments` coordinator duty to be scheduled continuously. Things that prevented this, or made this difficult before were the following:
1. If scheduled at fast enough rate, the duty would find the same intervals to kill for the same datasources, while kill tasks submitted for those same datasources and intervals were already underway, thus wasting task slots on duplicated work.
2. The task resources used by auto kill were previously unbounded. Each duty run period, if unused
segments were found for any datasource, a kill task would be submitted to kill them.
This pr solves for both of these issues:
1. The duty keeps track of the end time of the last interval found when killing unused segments for each datasource, in a in memory map. The end time for each datasource, if found, is used as the start time lower bound, when searching for unused intervals for that same datasource. Each duty run, we remove any datasource keys from this map that are no longer found to match datasources in the system, or in whitelist, and also remove a datasource entry, if there is found to be no unused segments for the datasource, which happens when we fail to find an interval which includes unused segments. Removing the datasource entry from the map, allows for searching for unusedSegments in the datasource from the beginning of time once again
2. The unbounded task resource usage can be mitigated with coordinator dynamic config added as part of ba957a9b97
Operators can configure continous auto kill by providing coordinator runtime properties similar to the following:
```
druid.coordinator.period.indexingPeriod=PT60S
druid.coordinator.kill.period=PT60S
```
And providing sensible limits to the killTask usage via coordinator dynamic properties.