* select sum(c) on an unnested column now does not return 'Type mismatch' error and works properly
* Making sure an inner join query works properly
* Having on unnested column with a group by now works correctly
* count(*) on an unnested query now works correctly
Due to race conditions, the BrokerServerView may sometimes try to add a segment to a server which has already been removed from the inventory. This results in an NPE and keeps the BrokerServerView from processing all change requests.
With the KubernetesTaskRunner, if a task is manually shutdown via the web console while running or the corresponding k8s job is manually deleted, the thread responsible for overseeing the task gets stuck in a loop because the fabric8 client sends one event to it that the job is null when the job is deleted, but this doesn't pass the condition.
This means that the thread is stuck waiting on a fabric8 event (the job being successful) that will never come up until maxTaskDuration (default 4 hours). If a user of the extension is trying to use a limited taskqueue maxSize, this can cause problems as the k8s executor pool is unable to pick up additional tasks (since threads are stuck waiting on the old tasks that have already been deleted).
This change introduces the concept of input source type security model, proposed in #13837.. With this change, this feature is only available at the SQL layer, but we will expand to native layer in a follow up PR.
To enable this feature, the user must set the following property to true:
druid.auth.enableInputSourceSecurity=true
The default value for this property is false, which will continue the existing functionality of having the usage all external sources being authorized against the hardcoded resource action
new ResourceAction(new Resource(ResourceType.EXTERNAL, ResourceType.EXTERNAL), Action.READ
When this config is enabled, the users will be required to be authorized for the following resource action
new ResourceAction(new Resource(ResourceType.EXTERNAL, {INPUT_SOURCE_TYPE}, Action.READ
where {INPUT_SOURCE_TYPE} is the type of the input source being used;, http, inline, s3, etc..
Documentation has not been added for the feature as it is not complete at the moment, as we still need to enable this for the native layer in a follow up pr.
While using intermediateSuperSorterStorageMaxLocalBytes the super sorter was retaining references of the memory allocator.
The fix clears the current outputChannel when close() is called on the ComposingWritableFrameChannel.java
This PR is a follow-up to #13819 so that the Tuple sketch functionality can be used in SQL for both ingestion using Multi-Stage Queries (MSQ) and also for analytic queries against Tuple sketch columns.
* Reworking s3 connector with
1. Adding retries
2. Adding max fetch size
3. Using s3Utils for most of the api's
4. Fixing bugs in DurableStorageCleaner
5. Moving to Iterator for listDir call
array columns!
changes:
* add support for storing nested arrays of string, long, and double values as specialized nested columns instead of breaking them into separate element columns
* nested column type mimic behavior means that columns ingested with only root arrays of primitive values will be ARRAY typed columns
* neat test refactor stuff
* add v4 segment test
* add array element indexes
* add tests for unnest and array columns
* fix unnest column value selector cursor handling of null and empty arrays
Document how to report security issues on the security overview page, so we can link this page from the homepage. That should make all the other important security information easier to find as well.
Expands the OIDC based auth in Druid by adding a JWT Authenticator that validates ID Tokens associated with a request. The existing pac4j authenticator works for authenticating web users while accessing the console, whereas this authenticator is for validating Druid API requests made by Direct clients. Services already supporting OIDC can attach their ID tokens to the Druid requests
under the Authorization request header.
* Hook up PodTemplateTaskAdapter
* Make task adapter TYPE parameters final
* Rename adapters types
* Include specified adapter name in exception message
* Documentation for sidecarSupport deprecation
* Fix order
* Set TASK_ID as environment variable in PodTemplateTaskAdapter (#13969)
* Update docs/development/extensions-contrib/k8s-jobs.md
Co-authored-by: Abhishek Agarwal <1477457+abhishekagarwal87@users.noreply.github.com>
* Hook up PodTemplateTaskAdapter
* Make task adapter TYPE parameters final
* Rename adapters types
* Include specified adapter name in exception message
* Documentation for sidecarSupport deprecation
* Fix order
* fix spelling errors
---------
Co-authored-by: Abhishek Agarwal <1477457+abhishekagarwal87@users.noreply.github.com>
* Refactoring and bug fixes on top of unnest. The filter now is passed inside the unnest cursors. Added tests for scenarios such as
1. filter on unnested column which involves a left filter rewrite
2. filter on unnested virtual column which pushes the filter to the right only and involves no rewrite
3. not filters
4. SQL functions applied on top of unnested column
5. null present in first row of the column to be unnested
* Pod template task adapter
* Use getBaseTaskDirPaths
* Remove unused task from getEnv
* Use Optional.ifPresent() instead of Optional.map()
* Pass absolute path
* Don't pass task to getEnv
* Assert the correct adapter is created
* Javadocs and Comments
* Add exception message to assertions
* Add segment generator counters to reports
* Remove unneeded annotation
* Fix checkstyle and coverage
* Add persist and merged as new metrics
* Address review comments
* Fix checkstyle
* Create metrics class to handle updating counters
* Address review comments
* Add rowsPushed as a new metrics
changes:
* fixes inconsistent handling of byte[] values between ExprEval.bestEffortOf and ExprEval.ofType, which could cause byte[] values to end up as java toString values instead of base64 encoded strings in ingest time transforms
* improved ExpressionTransform binding to re-use ExprEval.bestEffortOf when evaluating a binding instead of throwing it away
* improved ExpressionTransform array handling, added RowFunction.evalDimension that returns List<String> to back Row.getDimension and remove the automatic coercing of array types that would typically happen to expression transforms unless using Row.getDimension
* added some tests for ExpressionTransform with array inputs
* improved ExpressionPostAggregator to use partial type information from decoration
* migrate some test uses of InputBindings.forMap to use other methods
Changes:
- Set `useRoundRobinSegmentAssignment` in coordinator dynamic config to `true` by default.
- Set `batchSegmentAllocation` in `TaskLockConfig` (used in Overlord runtime properties) to `true` by default.
Broken test appears unrelated to this PR
* make druidapi pip installable
* include druidapi in prerequisites
* add license to setup.py
* updates from Paul's review
* note about editable install
* Apply suggestions from code review
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
* update install instructions
* found unrelated typos
* standardize install cmd with pip
---------
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
* Lower default maxRowsInMemory for realtime ingestion.
The thinking here is that for best ingestion throughput, we want
intermediate persists to be as big as possible without using up all
available memory. So, we rely mainly on maxBytesInMemory. The default
maxRowsInMemory (1 million) is really just a safety: in case we have
a large number of very small rows, we don't want to get overwhelmed
by per-row overheads.
However, maximum ingestion throughput isn't necessarily the primary
goal for realtime ingestion. Query performance is also important. And
because query performance is not as good on the in-memory dataset, it's
helpful to keep it from growing too large. 150k seems like a reasonable
balance here. It means that for a typical 5 million row segment, we
won't trigger more than 33 persists due to this limit, which is a
reasonable number of persists.
* Update tests.
* Update server/src/main/java/org/apache/druid/segment/indexing/RealtimeTuningConfig.java
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* Fix test.
* Fix link.
---------
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* This makes the zookeeper connection retry count configurable. This is presently hardcoded to 29 tries which ends up taking a long time for the druid node to shutdown in case of ZK connectivity loss.
Having a shorter retry count helps k8s deployments to fail fast. In situations where the underlying k8s node loses network connectivity or is no longer able to talk to zookeeper, failing fast can trigger pod restarts which can then reassign the pod to a healthy k8s node.
Existing behavior is preserved, but users can override this property if needed.
* Removing intermediateSuperSorterStorageMaxLocalBytes, maxInputBytesPerWorker, composedIntermediateSuperSorterStorageEnabled, clusterStatisticsMergeMode from docs
* Adding documentation in the context class.