In the current design, brokers query both data nodes and tasks to fetch the schema of the segments they serve. The table schema is then constructed by combining the schemas of all segments within a datasource. However, this approach leads to a high number of segment metadata queries during broker startup, resulting in slow startup times and various issues outlined in the design proposal.
To address these challenges, we propose centralizing the table schema management process within the coordinator. This change is the first step in that direction. In the new arrangement, the coordinator will take on the responsibility of querying both data nodes and tasks to fetch segment schema and subsequently building the table schema. Brokers will now simply query the Coordinator to fetch table schema. Importantly, brokers will still retain the capability to build table schemas if the need arises, ensuring both flexibility and resilience.
* sql compatible tri-state native logical filters when druid.expressions.useStrictBooleans=true and druid.generic.useDefaultValueForNull=false, and new druid.generic.useThreeValueLogicForNativeFilters=true
* log.warn if non-default configurations are used to guide operators towards SQL complaint behavior
This PR updates the library used for Memcached client to AWS Elasticache Client : https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-java
This enables us to use the option of encrypting data in transit:
Amazon ElastiCache for Memcached now supports encryption of data in transit
For clusters running the Memcached engine, ElastiCache supports Auto Discovery—the ability for client programs to automatically identify all of the nodes in a cache cluster, and to initiate and maintain connections to all of these nodes.
Benefits of Auto Discovery - Amazon ElastiCache
AWS has forked spymemcached 2.12.1, and has since added all the patches included in 2.12.2 and 2.12.3 as part of the 1.2.0 release. So, this can now be considered as an equivalent drop-in replacement.
GitHub - awslabs/aws-elasticache-cluster-client-memcached-for-java: Amazon ElastiCache Cluster Client for Java - enhanced library to connect to ElastiCache clusters.
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/elasticache/AmazonElastiCacheClient.html#AmazonElastiCacheClient--
How to enable TLS with Elasticache
On server side:
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/in-transit-encryption-mc.html#in-transit-encryption-enable-existing-mc
On client side:
GitHub - awslabs/aws-elasticache-cluster-client-memcached-for-java: Amazon ElastiCache Cluster Client for Java - enhanced library to connect to ElastiCache clusters.
A new monitor SubqueryCountStatsMonitor which emits the metrics corresponding to the subqueries and their execution is now introduced. Moreover, the user can now also use the auto mode to automatically set the number of bytes available per query for the inlining of its subquery's results.
Changes:
[A] Remove config `decommissioningMaxPercentOfMaxSegmentsToMove`
- It is a complicated config 😅 ,
- It is always desirable to prioritize move from decommissioning servers so that
they can be terminated quickly, so this should always be 100%
- It is already handled by `smartSegmentLoading` (enabled by default)
[B] Remove config `maxNonPrimaryReplicantsToLoad`
This was added in #11135 to address two requirements:
- Prevent coordinator runs from getting stuck assigning too many segments to historicals
- Prevent load of replicas from competing with load of unavailable segments
Both of these requirements are now already met thanks to:
- Round-robin segment assignment
- Prioritization in the new coordinator
- Modifications to `replicationThrottleLimit`
- `smartSegmentLoading` (enabled by default)
Changes
- Increase value of `replicationThrottleLimit` computed by `smartSegmentLoading` from
2% to 5% of total number of used segments.
- Assign replicas to a tier even when some replicas are already being loaded in that tier
- Limit the total number of replicas in load queue at start of run + replica assignments in
the run to the `replicationThrottleLimit`.
i.e. for every tier,
num loading replicas at start of run + num replicas assigned in run <= replicationThrottleLimit
Changes:
- Determine the default value of balancerComputeThreads based on number of
coordinator cpus rather than number of segments. Even if the number of segments
is low and we create more balancer threads, it doesn't hurt the system as threads
would mostly be idle.
- Remove unused field from SegmentLoadQueueManager
Expected values:
- Clusters with ~1M segments typically work with Coordinators having 16 cores or more.
This would give us 8 balancer threads, which is the same as the current maximum.
- On small clusters, even a single thread is enough to do the required balancing work.
### Description
This change enables the `KillUnusedSegments` coordinator duty to be scheduled continuously. Things that prevented this, or made this difficult before were the following:
1. If scheduled at fast enough rate, the duty would find the same intervals to kill for the same datasources, while kill tasks submitted for those same datasources and intervals were already underway, thus wasting task slots on duplicated work.
2. The task resources used by auto kill were previously unbounded. Each duty run period, if unused
segments were found for any datasource, a kill task would be submitted to kill them.
This pr solves for both of these issues:
1. The duty keeps track of the end time of the last interval found when killing unused segments for each datasource, in a in memory map. The end time for each datasource, if found, is used as the start time lower bound, when searching for unused intervals for that same datasource. Each duty run, we remove any datasource keys from this map that are no longer found to match datasources in the system, or in whitelist, and also remove a datasource entry, if there is found to be no unused segments for the datasource, which happens when we fail to find an interval which includes unused segments. Removing the datasource entry from the map, allows for searching for unusedSegments in the datasource from the beginning of time once again
2. The unbounded task resource usage can be mitigated with coordinator dynamic config added as part of ba957a9b97
Operators can configure continous auto kill by providing coordinator runtime properties similar to the following:
```
druid.coordinator.period.indexingPeriod=PT60S
druid.coordinator.kill.period=PT60S
```
And providing sensible limits to the killTask usage via coordinator dynamic properties.
* Add new configurable buffer period to create gap between mark unused and kill of segment
* Changes after testing
* fixes and improvements
* changes after initial self review
* self review changes
* update sql statement that was lacking last_used
* shore up some code in SqlMetadataConnector after self review
* fix derby compatibility and improve testing/docs
* fix checkstyle violations
* Fixes post merge with master
* add some unit tests to improve coverage
* ignore test coverage on new UpdateTools cli tool
* another attempt to ignore UpdateTables in coverage check
* change column name to used_flag_last_updated
* fix a method signature after column name switch
* update docs spelling
* Update spelling dictionary
* Fixing up docs/spelling and integrating altering tasks table with my alteration code
* Update NULL values for used_flag_last_updated in the background
* Remove logic to allow segs with null used_flag_last_updated to be killed regardless of bufferPeriod
* remove unneeded things now that the new column is automatically updated
* Test new background row updater method
* fix broken tests
* fix create table statement
* cleanup DDL formatting
* Revert adding columns to entry table by default
* fix compilation issues after merge with master
* discovered and fixed metastore inserts that were breaking integration tests
* fixup forgotten insert by using pattern of sharing now timestamp across columns
* fix issue introduced by merge
* fixup after merge with master
* add some directions to docs in the case of segment table validation issues
### Description
Previously, the `KillUnusedSegments` coordinator duty, in charge of periodically deleting unused segments, could spawn an unlimited number of kill tasks for unused segments. This change adds 2 new coordinator dynamic configs that can be used to control the limit of tasks spawned by this coordinator duty
`killTaskSlotRatio`: Ratio of total available task slots, including autoscaling if applicable that will be allowed for kill tasks. This limit only applies for kill tasks that are spawned automatically by the coordinator's auto kill duty. Default is 1, which allows all available tasks to be used, which is the existing behavior
`maxKillTaskSlots`: Maximum number of tasks that will be allowed for kill tasks. This limit only applies for kill tasks that are spawned automatically by the coordinator's auto kill duty. Default is INT.MAX, which essentially allows for unbounded number of tasks, which is the existing behavior.
Realize that we can effectively get away with just the one `killTaskSlotRatio`, but following similarly to the compaction config, which has similar properties; I thought it was good to have some control of the upper limit regardless of ratio provided.
#### Release note
NEW: `killTaskSlotRatio` and `maxKillTaskSlots` coordinator dynamic config properties added that allow control of task resource usage spawned by `KillUnusedSegments` coordinator task (auto kill)
Cache is disabled for GroupByStrategyV2 on broker since the pr #3820 [groupBy v2: Results not fully merged when caching is enabled on the broker]. But we can enable the result-level cache on broker for GroupByStrategyV2 and keep the segment-level cache disabled.
* Claim full support for Java 17.
No production code has changed, except the startup scripts.
Changes:
1) Allow Java 17 without DRUID_SKIP_JAVA_CHECK.
2) Include the full list of opens and exports on both Java 11 and 17.
3) Document that Java 17 is both supported and preferred.
4) Switch some tests from Java 11 to 17 to get better coverage on the
preferred version.
* Doc update.
* Update errorprone.
* Update docker_build_containers.sh.
* Update errorprone in licenses.yaml.
* Add some more run-javas.
* Additional run-javas.
* Update errorprone.
* Suppress new errorprone error.
* Add exports and opens in ForkingTaskRunner for Java 11+.
Test, doc changes.
* Additional errorprone updates.
* Update for errorprone.
* Restore old fomatting in LdapCredentialsValidator.
* Copy bin/ too.
* Fix Java 15, 17 build line in docker_build_containers.sh.
* Update busybox image.
* One more java command.
* Fix interpolation.
* IT commandline refinements.
* Switch to busybox 1.34.1-glibc.
* POM adjustments, build and test one IT on 17.
* Additional debugging.
* Fix silly thing.
* Adjust command line.
* Add exports and opens one more place.
* Additional harmonization of strong encapsulation parameters.
After #13197 , several coordinator configs are now redundant as they are not being
used anymore, neither with `smartSegmentLoading` nor otherwise.
Changes:
- Remove dynamic configs `emitBalancingStats`: balancer error stats are always
emitted, debug stats can be logged by using `debugDimensions`
- `useBatchedSegmentSampler`, `percentOfSegmentsToConsiderPerMove`:
batched segment sampling is always used
- Add test to verify deserialization with unknown properties
- Update `CoordinatorRunStats` to always track stats, this can be optimized later.
* combine string column implementations
changes:
* generic indexed, front-coded, and auto string columns now all share the same column and index supplier implementations
* remove CachingIndexed implementation, which I think is largely no longer needed by the switch of many things to directly using ByteBuffer, avoiding the cost of creating Strings
* remove ColumnConfig.columnCacheSizeBytes since CachingIndexed was the only user
* Add OverlordStatusMonitor and CoordinatorStatusMonitor to monitor service leader status
* make the monitor more general
* resolve conflict
* use Supplier pattern to provide metrics
* reformat code and doc
* move service specific tag to dimension
* minor refine
* update doc
* reformat code
* address comments
* remove declared exception
* bind HeartbeatSupplier conditionally in Coordinator
Users can now add a guardrail to prevent subquery’s results from exceeding the set number of bytes by setting druid.server.http.maxSubqueryRows in Broker's config or maxSubqueryRows in the query context. This feature is experimental for now and would default back to row-based limiting in case it fails to get the accurate size of the results consumed by the query.
The defaults of the following config values in the `CoordinatorDynamicConfig` are being updated.
1. `maxSegmentsInNodeLoadingQueue = 500` (previous = 100)
2. `replicationThrottleLimit = 500` (previous = 10)
Rationale: With round-robin segment assignment now being the default assignment technique,
the Coordinator can assign a large number of under-replicated/unavailable segments very quickly,
without getting stuck in `RunRules` duty due to very slow strategy-based cost computations.
3. `maxSegmentsToMove = 100` (previous = 5)
Rationale: A very low value (say 5) is ineffective in balancing especially if there are many segments
to balance. A very large value can cause excessive moves, which has these disadvantages:
- Load of moving segments competing with load of unavailable/under-replicated segments
- Unnecessary network costs due to constant download and delete of segments
These defaults will be revisited after #13197 is merged.
This PR adds a new interface to control how SegmentMetadataCache chooses ColumnType when faced with differences between segments for SQL schemas which are computed, exposed as druid.sql.planner.metadataColumnTypeMergePolicy and adds a new 'least restrictive type' mode to allow choosing the type that data across all segments can best be coerced into and sets this as the default behavior.
This is a behavior change around when segment driven schema migrations take effect for the SQL schema. With latestInterval, the SQL schema will be updated as soon as the first job with the new schema has published segments, while using leastRestrictive, the schema will only be updated once all segments are reindexed to the new type. The benefit of leastRestrictive is that it eliminates a bunch of type coercion errors that can happen in SQL when types are varied across segments with latestInterval because the newest type is not able to correctly represent older data, such as if the segments have a mix of ARRAY and number types, or any other combinations that lead to odd query plans.
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
Co-authored-by: Victoria Lim <lim.t.victoria@gmail.com>
* Be able to load segments on Peons
This change introduces a new config on WorkerConfig
that indicates how many bytes of each storage
location to use for storage of a task. Said config
is divided up amongst the locations and slots
and then used to set TaskConfig.tmpStorageBytesPerTask
The Peons use their local task dir and
tmpStorageBytesPerTask as their StorageLocations for
the SegmentManager such that they can accept broadcast
segments.
* Make LoggingEmitter more useful
* Skip code coverage for facade classes
* fix spellcheck
* code review
* fix dependency
* logging.md
* fix checkstyle
* Add back jacoco version to main pom
* Allow for Log4J to be configured for peons but still ensure console logging is enforced
This change will allow for log4j to be configured for peons but require console logging is still
configured for them to ensure peon logs are saved to deep storage.
Also fixed the test ConsoleLoggingEnforcementTest to use a valid appender for the non console
Config as the previous config was incorrect and would never return a logger.
* fix checkstyle
* add warning to logger when it overwrites all loggers to be console
* optimize calls for altering logging config for ConsoleLoggingEnforcementConfigurationFactory
add getName to the druid logger class
* update docs, and error message
* edit docs to be more clear
* fix checkstyle issues
* CI fixes - LoggerTest code coverage and fix spelling issue for logging docs
*
Adds new run time parameter druid.indexer.task.tmpStorageBytesPerTask. This sets a limit for the amount of temporary storage disk space used by tasks. This limit is currently only respected by MSQ tasks.
* Removes query context parameters intermediateSuperSorterStorageMaxLocalBytes and composedIntermediateSuperSorterStorageEnabled. Composed intermediate super sorter (which was enabled by composedIntermediateSuperSorterStorageEnabled) is now enabled automatically if durableShuffleStorage is set to true. intermediateSuperSorterStorageMaxLocalBytes is calculated from the limit set by the run time parameter druid.indexer.task.tmpStorageBytesPerTask.
* Make the tasks run with only a single directory
There was a change that tried to get indexing to run on multiple disks
It made a bunch of changes to how tasks run, effectively hiding the
"safe" directory for tasks to write files into from the task code itself
making it extremely difficult to do anything correctly inside of a task.
This change reverts those changes inside of the tasks and makes it so that
only the task runners are the ones that make decisions about which
mount points should be used for storing task-related files.
It adds the config druid.worker.baseTaskDirs which can be used by the
task runners to know which directories they should schedule tasks inside of.
The TaskConfig remains the authoritative source of configuration for where
and how an individual task should be operating.
The FiniteFirehoseFactory and InputRowParser classes were deprecated in 0.17.0 (#8823) in favor of InputSource & InputFormat. This PR removes the FiniteFirehoseFactory and all its implementations along with classes solely used by them like Fetcher (Used by PrefetchableTextFilesFirehoseFactory). Refactors classes including tests using FiniteFirehoseFactory to use InputSource instead.
Removing InputRowParser may not be as trivial as many classes that aren't deprecated depends on it (with no alternatives), like EventReceiverFirehoseFactory. Hence FirehoseFactory, EventReceiverFirehoseFactory, and Firehose are marked deprecated.