Follow up to #15705
Changes:
- Remove references to ZK-based segment loading in the docs
- Fix doc for existing config `druid.coordinator.loadqueuepeon.http.repeatDelay`
* Delta Lake support for filters.
* Updates
* cleanup comments
* Docs
* Remmove Enclosed runner
* Rename
* Cleanup test
* Serde test for the Delta input source and fix jackson annotation.
* Updates and docs.
* Update error messages to be clearer
* Fixes
* Handle NumberFormatException to provide a nicer error message.
* Apply suggestions from code review
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
* Doc fixes based on feedback
* Yes -> yes in docs; reword slightly.
* Update docs/ingestion/input-sources.md
Co-authored-by: Laksh Singla <lakshsingla@gmail.com>
* Update docs/ingestion/input-sources.md
Co-authored-by: Laksh Singla <lakshsingla@gmail.com>
* Documentation, javadoc and more updates.
* Not with an or expression end-to-end test.
* Break up =, >, >=, <, <= into its own types instead of sub-classing.
---------
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
Co-authored-by: Laksh Singla <lakshsingla@gmail.com>
Changes:
- Add new config `lagAggregate` to `LagBasedAutoScalerConfig`
- Add field `aggregateForScaling` to `LagStats`
- Use the new field/config to determine which aggregate to use to compute lag
- Remove method `Supervisor.computeLagForAutoScaler()`
* Four changes to scalar_in_array as follow-ups to #16306:
1) Align behavior for `null` scalars to the behavior of the native `in` and `inType` filters: return `true` if the array itself contains null, else return `null`.
2) Rename the class to more closely match the function name.
3) Add a specialization for constant arrays, where we build a `HashSet`.
4) Use `castForEqualityComparison` to properly handle cross-type comparisons.
Additional tests verify comparisons between LONG and DOUBLE are now
handled properly.
* Fix spelling.
* Adjustments from review.
Issue: #14989
The initial step in optimizing segment metadata was to centralize the construction of datasource schema in the Coordinator (#14985). Thereafter, we addressed the problem of publishing schema for realtime segments (#15475). Subsequently, our goal is to eliminate the requirement for regularly executing queries to obtain segment schema information.
This is the final change which involves publishing segment schema for finalized segments from task and periodically polling them in the Coordinator.
Statsd client sometimes drops metrics when this queueSize of statsd client with max unprocessed messages is completely full. This causes some high cardinality metrics like per partition lag being droppped.
There are multiple parameters of statsdclient that can be initialized and can help increase the load/capacity of client to not to drop metrics more frequently.
Properties like queueSize, poolSize, processorWorkers and senderWorkers will now be configurable at runtime
* Adds Druid SQL query examples for the Timeseries and GroupBy Native queries in the stats aggregator docs page
* Updates intervals in Native Query to remove excess Time part in timestamp
* Moves Druid SQL section above Native query because sql used more often by users
* removes old Druid SQL sections
* Adds TopN Druid SQL query using ORDER BY and LIMIT
* Adds table for Druid SQL variance and standard deviation functions
* Update docs/development/extensions-core/stats.md
Co-authored-by: Abhishek Radhakrishnan <abhishek.rb19@gmail.com>
---------
Co-authored-by: Karan Kumar <karankumar1100@gmail.com>
Co-authored-by: Abhishek Radhakrishnan <abhishek.rb19@gmail.com>
Currently, export creates the files at the provided destination. The addition of the manifest file will provide a list of files created as part of the manifest. This will allow easier consumption of the data exported from Druid, especially for automated data pipelines
The default value for druid.coordinator.kill.period (if unspecified) has changed from P1D to the value of druid.coordinator.period.indexingPeriod. Operators can choose to override druid.coordinator.kill.period and that will take precedence over the default behavior.
The default value for the coordinator dynamic config killTaskSlotRatio is updated from 1.0 to 0.1. This ensures that that kill tasks take up only 1 task slot right out-of-the-box instead of taking up all the task slots.
* Remove stale comment and inline canDutyRun()
* druid.coordinator.kill.period defaults to druid.coordinator.period.indexingPeriod if not set.
- Remove the default P1D value for druid.coordinator.kill.period. Instead default
druid.coordinator.kill.period to whatever value druid.coordinator.period.indexingPeriod is set
to if the former config isn't specified.
- If druid.coordinator.kill.period is set, the value will take precedence over
druid.coordinator.period.indexingPeriod
* Update server/src/test/java/org/apache/druid/server/coordinator/DruidCoordinatorConfigTest.java
* Fix checkstyle error
* Clarify comment
* Update server/src/main/java/org/apache/druid/server/coordinator/DruidCoordinatorConfig.java
* Put back canDutyRun()
* Default killTaskSlotsRatio to 0.1 instead of 1.0 (all slots)
* Fix typo DEFAULT_MAX_COMPACTION_TASK_SLOTS
* Remove unused test method.
* Update default value of killTaskSlotsRatio in docs and web-console default mock
* Move initDuty() after params and config setup.
Changes:
- Add `TaskContextEnricher` interface to improve task management and monitoring
- Invoke `enrichContext` in `TaskQueue.add()` whenever a new task is submitted to the Overlord
- Add `TaskContextReport` to write out task context information in reports
Compaction in the native engine by default records the state of compaction for each segment in the lastCompactionState segment field. This PR adds support for doing the same in the MSQ engine, targeted for future cases such as REPLACE and compaction done via MSQ.
Note that this PR doesn't implicitly store the compaction state for MSQ replace tasks; it is stored with flag "storeCompactionState": true in the query context.
Current Runtime Exceptions generated while writing frames only include the exception itself without including the name of the column they were encountered in. This patch introduces the further information in the error and makes it non-retryable.
This PR logs the segment type and reason chosen. It also adds it to the query report, to be displayed in the UI.
This PR adds a new section to the reports, segmentReport. This contains the segment type created, if the query is an ingestion, and null otherwise.
Support for exporting msq results to gcs bucket. This is essentially copying the logic of s3 export for gs, originally done by @adarshsanjeev in this PR - #15689
This PR creates an interface for ImmutableRTree and moved the existing implementation to new class which represent 32 bit implementation (stores coordinate as floats). This PR makes the ImmutableRTree extendable to create higher precision implementation as well (64 bit).
In all spatial bound filters, we accept float as input which might not be accurate in the case of high precision implementation of ImmutableRTree. This PR changed the bound filters to accepts the query bounds as double instead of float and it is backward compatible change as it compares double to existing float values in RTree. Previously it was comparing input float to RTree floats which can cause precision loss, now it is little better as it compares double to float which is still not 100% accurate.
There are no changes in the way that we query spatial dimension today except input bound parsing. There is little improvement in string filter predicate which now parse double strings instead of float and compares double to double which is 100% accurate but string predicate is only called when we dont have spatial index.
With allowing the interface to extend ImmutableRTree, we allow to create high precision (HP) implementation and defines new search strategies to perform HP search Iterable<ImmutableBitmap> search(ImmutableDoubleNode node, Bound bound);
With possible HP implementations, Radius bound filter can not really focus on accuracy, it is calculating Euclidean distance in comparing. As EARTH 🌍 is round and not flat, Euclidean distances are not accurate in geo system. This PR adds new param called 'radiusUnit' which allows you to specify units like meters, km, miles etc. It uses https://en.wikipedia.org/wiki/Haversine_formula to check if given geo point falls inside circle or not. Added a test that generates set of points inside and outside in RadiusBoundTest.
This PR aims to introduce Window functions on MSQ by doing the following:
Introduce a Window querykit for handling window queries along with its factory and a processor for window queries
If a window operator is present with a partition by clause, pushes the partition as a shuffle spec of the previous stage
In presence of empty OVER() clause lets all operators loose on a single rac
In presence of no empty OVER() clause, breaks down each window into individual stages
Associated machinery to handle window functions in MSQ
Introduced a separate hidden engine feature WINDOW_LEAF_OPERATOR which is set only for MSQ engine. In presence of this feature, the planner plans without the leaf operators by creating a window query over an inner scan query. In case of native this is set to false and the planner generates the leafOperators
Guardrails around materialization
Comprehensive UTs
Changes:
Add the following indexer level task metrics:
- `worker/task/running/count`
- `worker/task/assigned/count`
- `worker/task/completed/count`
These metrics will provide more visibility into the tasks distribution across indexers
(We often see a task skew issue across indexers and with this issue it would be easier
to catch the imbalance)
* Mark used and unused APIs by versions.
* remove the conditional invocations.
* isValid() and test updates.
* isValid() and tests.
* Remove warning logs for invalid user requests. Also, downgrade visibility.
* Update resp message, etc.
* tests and some cleanup.
* Docs draft
* Clarify docs
* Update server/src/main/java/org/apache/druid/server/http/DataSourcesResource.java
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* Review comments
* Remove default interface methods only used in tests and update docs.
* Clarify javadocs and @Nullable.
* Add more tests.
* Parameterized versions.
---------
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* MSQ: Validate that strings and string arrays are not mixed.
When multi-value strings and string arrays coexist in the same column,
it causes problems with "classic MVD" style queries such as:
select * from wikipedia -- fails at runtime
select count(*) from wikipedia where flags = 'B' -- fails at planning time
select flags, count(*) from wikipedia group by 1 -- fails at runtime
To avoid these problems, this patch adds type verification for INSERT
and REPLACE. It is targeted: the only type changes that are blocked are
string-to-array and array-to-string. There is also a way to exclude
certain columns from the type checks, if the user really knows what
they're doing.
* Fixes.
* Tests and docs and error messages.
* More docs.
* Adjustments.
* Adjust message.
* Fix tests.
* Fix test in DV mode.
* docs: clarify description of uri/uripath
* Apply suggestions from code review
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
---------
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Kill task version support.
Kill tasks by default kill all versions of unused segments in the specified
interval. Users wanting to delete specific versions (for example, data compliance
reasons) and keep rest of the versions can specify the optional version in the
kill task payload.
* Formatting changes.
* Multi version tests in RetrieveSegmentsActionsTest
Sort of like method-level parameterized tests.
* Address review feedback
* Accept a list of versions instead of a single version.
Support multiple versions.
* Tests for multiple versions.
* Update docs
* Cleanup
* Address review comments.
Retain the old interface method and make it default and route it to
the method with nullable versions variant. Update usages to use the
default method where versions doesn't matter.
* Remove versions from retreive used segments action.
* Some updates.
* Apply suggestions from code review
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* /s/actual/observed/g
* minor test cleanup
* WIP: Test fixes and updates. Also add test for kill by version with used load spec.
Checkpoint.
---------
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
Changes:
- Add visibility into number of segments read/published by each parallel compaction
- Add new fields `segmentsRead`, `segmentsPublished` to `IngestionStatsAndErrorsTaskReportData`
- Update `ParallelIndexSupervisorTask` to populate the new stats
* updated description of rowsPerPage in export operations
* Update docs/multi-stage-query/reference.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
---------
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Add support for AzureDNSZone enabled storage accounts used for deep storage
Added a new config to AzureAccountConfig
`storageAccountEndpointSuffix`
which allows the user to specify a storage account endpoint suffix where the underlying
storage account is enabled for AzureDNSZone. The previous config `endpointSuffix`, did not allow
support for such accounts. The previous config has been deprecated in favor of this new config. Also
fixed an issue where `managedIdentityClientId` was not being set properly
* * address review comments
* * add back azure government link and docs
* Move retries into DataSegmentPusher implementations.
The individual implementations know better when they should and should
not retry. They can also generate better error messages.
The inspiration for this patch was a situation where EntityTooLarge was
generated by the S3DataSegmentPusher, and retried uselessly by the
retry harness in PartialSegmentMergeTask.
* Fix missing var.
* Adjust imports.
* Tests, comments, style.
* Remove unused import.
* docs: add mermaid diagram support
* fix crash when parsing data in data loader that can not be parsed (#15983)
* update jetty to address CVE (#16000)
* Concurrent replace should work with supervisors using concurrent locks (#15995)
* Concurrent replace should work with supervisors using concurrent locks
* Ignore supervisors with useConcurrentLocks set to false
* Apply feedback
* Add pre-check for heavy debug logs (#15706)
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
Co-authored-by: Benedict Jin <asdf2014@apache.org>
* Remove helm paths from CodeQL config (#16006)
* docs: mention acid-compliance for metadb
---------
Co-authored-by: Vadim Ogievetsky <vadim@ogievetsky.com>
Co-authored-by: Jan Werner <105367074+janjwerner-confluent@users.noreply.github.com>
Co-authored-by: AmatyaAvadhanula <amatya.avadhanula@imply.io>
Co-authored-by: Sensor <fectrain@outlook.com>
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
Co-authored-by: Benedict Jin <asdf2014@apache.org>
* Update basic-cluster-tuning.md
The sentence "When free system memory is greater than or equal to druid.segmentCache.locations, the more segment data the Historical can be held in the memory-mapped segment cache" didn't read well. Updated to clarify it.
* Update docs/operations/basic-cluster-tuning.md
* Update docs/operations/basic-cluster-tuning.md
---------
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* All segments stored in the same batch have the same created_date entry.
In the absence of a group_id column, this metadata would allow us to easily
reason about and troubleshoot ingestion-related issues.
* Rename metric name and code references to eligibleUnusedSegments.
Address review comment from https://github.com/apache/druid/pull/15941#discussion_r1503631992
* Kill duty and test improvements.
Initial commit with:
- Bug fixes - auto-kill can throw NPE when there are no datasources present and defaults mismatch.
- Add new stat for candidate segment intervals killed.
- Move a couple of debug logs to info logs for improved visibility (should only log once per kill period).
- Remove redundant checks for code readability.
- Updated tests from using mocks (also the mocks weren't using last updated timestamp) and
add more test coverage for different config parameters.
- Add a couple of unit tests that are ignored for the eternity case to prove that
the kill duty doesn't clean up segments with ALL grain or that end in DateTimes.MAX.
- Migrate Druid exception from user to operator persona.
* Address review comments.
* Remove unused methods.
* fix up format specifier and validate bad config tests.
* Consolidate the helpers a bit more and add another test.
* Update test names. Add javadoc placeholders for slightly involved tests.
* Add docs for metric kill/candidateUnusedSegments/count.
Also, rename to disambiguate.
* Comments.
* Apply logging suggestions from code review
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* Review comments
- Clarify docs on eligibility.
- Add test for multiple segments in the same interval. Clarify comment.
- Remove log line from test.
- Remove lastUpdatedDate = now.plus(10) from test.
* minor cleanup.
* Clarify javadocs for getUnusedSegmentIntervals().
---------
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* Fix up typos, inaccuracies and clean up code related to PARTITIONED BY.
* Remove wrapper function and update tests to use DruidExceptionMatcher.
* Checkstyle and Intellij inspection fixes.
Changes:
- Add visibility into number of records processed by each streaming task per partition
- Add field `recordsProcessed` to `IngestionStatsAndErrorsTaskReportData`
- Populate number of records processed per partition in `SeekableStreamIndexTaskRunner`
Starting the process to officially deprecate non SQL compatible modes by updating docs to aggressively call out that Druids non SQL compliant modes are deprecated and will go away someday. There are no code or behavior changes at this PR.
Merging the work so far. @ektravel , @vogievetsky if there are additional improvements, let's track them & make another pr.
* Refactor streaming ingestion docs
* Update property definition
* Update after review
* Update known issues
* Move kinesis and kafka topics to ingestion, add redirects
* Saving changes
* Saving
* Add input format text
* Update after review
* Minor text edit
* Update example syntax
* Revert back to colon
* Fix merge conflicts
* Fix broken links
* Fix spelling error
This PR contains a portion of the changes from the inactive draft PR for integrating the catalog with the Calcite planner https://github.com/apache/druid/pull/13686 from @paul-rogers, extending the PARTITION BY clause to accept string literals for the time partitioning
* allow for kafka-emitter to have extra dimensions be set for each event it emits
* fix checktsyle issue in kafkaemitterconfig
* make changes to fix docs, and cleanup copy paste error in #toString()
* undo formatting to markdown table
* add more branches so test passes
* fix checkstyle issue
* Update the group id to org.apache.druid.extensions.contrib for contrib exts.
* Note iceberg and delta lake extensions in extensions.md
* properties and shell backticks
* Update groupId in distribution/pom.xml
* remove delta-lake from dist.
* Add note on downloading extension.
During ingestion, incremental segments are created in memory for the different time chunks and persisted to disk when certain thresholds are reached (max number of rows, max memory, incremental persist period etc). In the case where there are a lot of dimension and metrics (1000+) it was observed that the creation/serialization of incremental segment file format for persistence and persisting the file took a while and it was blocking ingestion of new data. This affected the real-time ingestion. This serialization and persistence can be parallelized across the different time chunks. This update aims to do that.
The patch adds a simple configuration parameter to the ingestion tuning configuration to specify number of persistence threads. The default value is 1 if it not specified which makes it the same as it is today.
If lots of keys map to the same value, reversing a LOOKUP call can slow
things down unacceptably. To protect against this, this patch introduces
a parameter sqlReverseLookupThreshold representing the maximum size of an
IN filter that will be created as part of lookup reversal.
If inSubQueryThreshold is set to a smaller value than
sqlReverseLookupThreshold, then inSubQueryThreshold will be used instead.
This allows users to use that single parameter to control IN sizes if they
wish.
* something
* test commit
* compilation fix
* more compilation fixes (fixme placeholders)
* Comment out druid-kereberos build since it conflicts with newly added transitive deps from delta-lake
Will need to sort out the dependencies later.
* checkpoint
* remove snapshot schema since we can get schema from the row
* iterator bug fix
* json json json
* sampler flow
* empty impls for read(InputStats) and sample()
* conversion?
* conversion, without timestamp
* Web console changes to show Delta Lake
* Asset bug fix and tile load
* Add missing pieces to input source info, etc.
* fix stuff
* Use a different delta lake asset
* Delta lake extension dependencies
* Cleanup
* Add InputSource, module init and helper code to process delta files.
* Test init
* Checkpoint changes
* Test resources and updates
* some fixes
* move to the correct package
* More tests
* Test cleanup
* TODOs
* Test updates
* requirements and javadocs
* Adjust dependencies
* Update readme
* Bump up version
* fixup typo in deps
* forbidden api and checkstyle checks
* Trim down dependencies
* new lines
* Fixup Intellij inspections.
* Add equals() and hashCode()
* chain splits, intellij inspections
* review comments and todo placeholder
* fix up some docs
* null table path and test dependencies. Fixup broken link.
* run prettify
* Different test; fixes
* Upgrade pyspark and delta-spark to latest (3.5.0 and 3.0.0) and regenerate tests
* yank the old test resource.
* add a couple of sad path tests
* Updates to readme based on latest.
* Version support
* Extract Delta DateTime converstions to DeltaTimeUtils class and add test
* More comprehensive split tests.
* Some test renames.
* Cleanup and update instructions.
* add pruneSchema() optimization for table scans.
* Oops, missed the parquet files.
* Update default table and rename schema constants.
* Test setup and misc changes.
* Add class loader logic as the context class loader is unaware about extension classes
* change some table client creation logic.
* Add hadoop-aws, hadoop-common and related exclusions.
* Remove org.apache.hadoop:hadoop-common
* Apply suggestions from code review
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
* Add entry to .spelling to fix docs static check
---------
Co-authored-by: abhishekagarwal87 <1477457+abhishekagarwal87@users.noreply.github.com>
Co-authored-by: Laksh Singla <lakshsingla@gmail.com>
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
* New: Add DDSketch-Druid extension
- Based off of http://www.vldb.org/pvldb/vol12/p2195-masson.pdf and uses
the corresponding https://github.com/DataDog/sketches-java library
- contains tests for post building and using aggregation/post
aggregation.
- New aggregator: `ddSketch`
- New post aggregators: `quantileFromDDSketch` and
`quantilesFromDDSketch`
* Fixing easy CodeQL warnings/errors
* Fixing docs, and dependencies
Also moved aggregator ids to AggregatorUtil and PostAggregatorIds
* Adding more Docs and better null/empty handling for aggregators
* Fixing docs, and pom version
* DDSketch documentation format and wording
A low value of inSubQueryThreshold can cause queries with IN filter to plan as joins more commonly. However, some of these join queries may not get planned as IN filter on data nodes and causes significant perf regression.
### Description
Our Kinesis consumer works by using the [GetRecords API](https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html) in some number of `fetchThreads`, each fetching some number of records (`recordsPerFetch`) and each inserting into a shared buffer that can hold a `recordBufferSize` number of records. The logic is described in our documentation at: https://druid.apache.org/docs/27.0.0/development/extensions-core/kinesis-ingestion/#determine-fetch-settings
There is a problem with the logic that this pr fixes: the memory limits rely on a hard-coded “estimated record size” that is `10 KB` if `deaggregate: false` and `1 MB` if `deaggregate: true`. There have been cases where a supervisor had `deaggregate: true` set even though it wasn’t needed, leading to under-utilization of memory and poor ingestion performance.
Users don’t always know if their records are aggregated or not. Also, even if they could figure it out, it’s better to not have to. So we’d like to eliminate the `deaggregate` parameter, which means we need to do memory management more adaptively based on the actual record sizes.
We take advantage of the fact that GetRecords doesn’t return more than 10MB (https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html ):
This pr:
eliminates `recordsPerFetch`, always use the max limit of 10000 records (the default limit if not set)
eliminate `deaggregate`, always have it true
cap `fetchThreads` to ensure that if each fetch returns the max (`10MB`) then we don't exceed our budget (`100MB` or `5% of heap`). In practice this means `fetchThreads` will never be more than `10`. Tasks usually don't have that many processors available to them anyway, so in practice I don't think this will change the number of threads for too many deployments
add `recordBufferSizeBytes` as a bytes-based limit rather than records-based limit for the shared queue. We do know the byte size of kinesis records by at this point. Default should be `100MB` or `10% of heap`, whichever is smaller.
add `maxBytesPerPoll` as a bytes-based limit for how much data we poll from shared buffer at a time. Default is `1000000` bytes.
deprecate `recordBufferSize`, use `recordBufferSizeBytes` instead. Warning is logged if `recordBufferSize` is specified
deprecate `maxRecordsPerPoll`, use `maxBytesPerPoll` instead. Warning is logged if maxRecordsPerPoll` is specified
Fixed issue that when the record buffer is full, the fetchRecords logic throws away the rest of the GetRecords result after `recordBufferOfferTimeout` and starts a new shard iterator. This seems excessively churny. Instead, wait an unbounded amount of time for queue to stop being full. If the queue remains full, we’ll end up right back waiting for it after the restarted fetch.
There was also a call to `newQ::offer` without check in `filterBufferAndResetBackgroundFetch`, which seemed like it could cause data loss. Now checking return value here, and failing if false.
### Release Note
Kinesis ingestion memory tuning config has been greatly simplified, and a more adaptive approach is now taken for the configuration. Here is a summary of the changes made:
eliminates `recordsPerFetch`, always use the max limit of 10000 records (the default limit if not set)
eliminate `deaggregate`, always have it true
cap `fetchThreads` to ensure that if each fetch returns the max (`10MB`) then we don't exceed our budget (`100MB` or `5% of heap`). In practice this means `fetchThreads` will never be more than `10`. Tasks usually don't have that many processors available to them anyway, so in practice I don't think this will change the number of threads for too many deployments
add `recordBufferSizeBytes` as a bytes-based limit rather than records-based limit for the shared queue. We do know the byte size of kinesis records by at this point. Default should be `100MB` or `10% of heap`, whichever is smaller.
add `maxBytesPerPoll` as a bytes-based limit for how much data we poll from shared buffer at a time. Default is `1000000` bytes.
deprecate `recordBufferSize`, use `recordBufferSizeBytes` instead. Warning is logged if `recordBufferSize` is specified
deprecate `maxRecordsPerPoll`, use `maxBytesPerPoll` instead. Warning is logged if maxRecordsPerPoll` is specified
* Kill tasks should honor the buffer period of unused segments.
- The coordinator duty KillUnusedSegments determines an umbrella interval
for each datasource to determine the kill interval. There can be multiple unused
segments in an umbrella interval with different used_status_last_updated timestamps.
For example, consider an unused segment that is 30 days old and one that is 1 hour old. Currently
the kill task after the 30-day mark would kill both the unused segments and not retain the 1-hour
old one.
- However, when a kill task is instantiated with this umbrella interval, it’d kill
all the unused segments regardless of the last updated timestamp. We need kill
tasks and RetrieveUnusedSegmentsAction to honor the bufferPeriod to avoid killing
unused segments in the kill interval prematurely.
* Clarify default behavior in docs.
* test comments
* fix canDutyRun()
* small updates.
* checkstyle
* forbidden api fix
* doc fix, unused import, codeql scan error, and cleanup logs.
* Address review comments
* Rename maxUsedFlagLastUpdatedTime to maxUsedStatusLastUpdatedTime
This is consistent with the column name `used_status_last_updated`.
* Apply suggestions from code review
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* Make period Duration type
* Remove older variants of runKilLTask() in OverlordClient interface
* Test can now run without waiting for canDutyRun().
* Remove previous variants of retrieveUnusedSegments from internal metadata storage coordinator interface.
Removes the following interface methods in favor of a new method added:
- retrieveUnusedSegmentsForInterval(String, Interval)
- retrieveUnusedSegmentsForInterval(String, Interval, Integer)
* Chain stream operations
* cleanup
* Pass in the lastUpdatedTime to markUnused test function and remove sleep.
---------
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* Undocument unused segments retrieval API.
* Mark API deprecated and unstable. Note that it'll be removed.
* Cleanup .spelling entries
* Remove the Unstable annotation
* Add SpectatorHistogram extension
* Clarify documentation
Cleanup comments
* Use ColumnValueSelector directly
so that we support being queried as a Number using longSum or doubleSum aggregators as well as a histogram.
When queried as a Number, we're returning the count of entries in the histogram.
* Apply suggestions from code review
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
* Fix references
* Fix spelling
* Update docs/development/extensions-contrib/spectator-histogram.md
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
---------
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
* Reverse, pull up lookups in the SQL planner.
Adds two new rules:
1) ReverseLookupRule, which eliminates calls to LOOKUP by doing
reverse lookups.
2) AggregatePullUpLookupRule, which pulls up calls to LOOKUP above
GROUP BY, when the lookup is injective.
Adds configs `sqlReverseLookup` and `sqlPullUpLookup` to control whether
these rules fire. Both are enabled by default.
To minimize the chance of performance problems due to many keys mapping to
the same value, ReverseLookupRule refrains from reversing a lookup if there
are more keys than `inSubQueryThreshold`. The rationale for using this setting
is that reversal works by generating an IN, and the `inSubQueryThreshold`
describes the largest IN the user wants the planner to create.
* Add additional line.
* Style.
* Remove commented-out lines.
* Fix tests.
* Add test.
* Fix doc link.
* Fix docs.
* Add one more test.
* Fix tests.
* Logic, test updates.
* - Make FilterDecomposeConcatRule more flexible.
- Make CalciteRulesManager apply reduction rules til fixpoint.
* Additional tests, simplify code.
Added support for Azure Government storage in Druid Azure-Extensions. This enhancement allows the Azure-Extensions to be compatible with different Azure storage types by updating the endpoint suffix from a hardcoded value to a configurable one.
This PR enables the flag by default to queue excess query requests in the jetty queue. Still keeping the flag so that it can be turned off if necessary. But the flag will be removed in the future.
* New handling for COALESCE, SEARCH, and filter optimization.
COALESCE is converted by Calcite's parser to CASE, which is largely
counterproductive for us, because it ends up duplicating expressions.
In the current code we end up un-doing it in our CaseOperatorConversion.
This patch has a different approach:
1) Add CaseToCoalesceRule to convert CASE back to COALESCE earlier, before
the Volcano planner runs, using CaseToCoalesceRule.
2) Add FilterDecomposeCoalesceRule to decompose calls like
"f(COALESCE(x, y))" into "(x IS NOT NULL AND f(x)) OR (x IS NULL AND f(y))".
This helps use indexes when available on x and y.
3) Add CoalesceLookupRule to push COALESCE into the third arg of LOOKUP.
4) Add a native "coalesce" function so we can convert 3+ arg COALESCE.
The advantage of this approach is that by un-doing the CASE to COALESCE
conversion earlier, we have flexibility to do more stuff with
COALESCE (like decomposition and pushing into LOOKUP).
SEARCH is an operator used internally by Calcite to represent matching
an argument against some set of ranges. This patch improves our handling
of SEARCH in two ways:
1) Expand NOT points (point "holes" in the range set) from SEARCH as
`!(a || b)` rather than `!a && !b`, which makes it possible to convert
them to a "not" of "in" filter later.
2) Generate those nice conversions for NOT points even if the SEARCH
is not composed of 100% NOT points. Without this change, a SEARCH
for "x NOT IN ('a', 'b') AND x < 'm'" would get converted like
"x < 'a' OR (x > 'a' AND x < 'b') OR (x > 'b' AND x < 'm')".
One of the steps we take when generating Druid queries from Calcite
plans is to optimize native filters. This patch improves this step:
1) Extract common ANDed predicates in ConvertSelectorsToIns, so we can
convert "(a && x = 'b') || (a && x = 'c')" into "a && x IN ('b', 'c')".
2) Speed up CombineAndSimplifyBounds and ConvertSelectorsToIns on
ORs with lots of children by adjusting the logic to avoid calling
"indexOf" and "remove" on an ArrayList.
3) Refactor ConvertSelectorsToIns to reduce duplicated code between the
handling for "selector" and "equals" filters.
* Not so final.
* Fixes.
* Fix test.
* Fix test.
* Minor fixes
* Update docs/development/extensions-contrib/prometheus.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
---------
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Allow empty inserts and replace.
- Introduce a new query context failOnEmptyInsert which defaults to false.
- When this context is false (default), MSQE will now allow empty inserts and replaces.
- When this context is true, MSQE will throw the existing InsertCannotBeEmpty MSQ fault.
- For REPLACE ALL over an ALL grain segment, the query will generate a tombstone spanning eternity
which will be removed eventually be the coordinator.
- Add unit tests in MSQInsertTest, MSQReplaceTest to test the new default behavior (i.e., when failOnEmptyInsert = false)
- Update unit tests in MSQFaultsTest to test the non-default behavior (i.e., when failOnEmptyInsert = true)
* Ignore test to see if it's the culprit for OOM
* Add heap dump config
* Bump up -Xmx from 1500 MB to 2048 MB
* Add steps to tarball and collect hprof dump to GHA action
* put back mx to 1500MB to trigger the failure
* add the step to reusable unit test workflow as well
* Revert the temp heap dump & @Ignore changes since max heap size is increased
* Minor updates
* Review comments
1. Doc suggestions
2. Add tests for empty insert and replace queries with ALL grain and limit in the
default failOnEmptyInsert mode (=false). Add similar tests to MSQFaultsTest with
failOnEmptyInsert = true, so the query does fail with an InsertCannotBeEmpty fault.
3. Nullable annotation and javadocs
* Add comment
replace_limit.patch
The PR addresses 2 things:
Add MSQ durable storage connector for GCS
Change GCS client library from the old Google API Client Library to the recommended Google Cloud Client Library. Ref: https://cloud.google.com/apis/docs/client-libraries-explained
* Optional removal of metrics from Prometheus PushGateway on shutdown
* Make pushGatewayDeleteOnShutdown property nullable
* Add waitForShutdownDelay property
* Fix unit test
* Address PR comments
* Address PR comments
* Add explanation on why it is useful to have deletePushGatewayMetricsOnShutdown
* Fix spelling error
* Fix spelling error
### Description
This pr adds an api for retrieving unused segments for a particular datasource. The api supports pagination by the addition of `limit` and `lastSegmentId` parameters. The resulting unused segments are returned with optional `sortOrder`, `ASC` or `DESC` with respect to the matching segments `id`, `start time`, and `end time`, or not returned in any guarenteed order if `sortOrder` is not specified
`GET /druid/coordinator/v1/datasources/{dataSourceName}/unusedSegments?interval={interval}&limit={limit}&lastSegmentId={lastSegmentId}&sortOrder={sortOrder}`
Returns a list of unused segments for a datasource in the cluster contained within an optionally specified interval.
Optional parameters for limit and lastSegmentId can be given as well, to limit results and enable paginated results.
The results may be sorted in either ASC, or DESC order depending on specifying the sortOrder parameter.
`dataSourceName`: The name of the datasource
`interval`: the specific interval to search for unused segments for.
`limit`: the maximum number of unused segments to return information about. This property helps to
support pagination
`lastSegmentId`: the last segment id from which to search for results. All segments returned are > this segment
lexigraphically if sortOrder is null or ASC, or < this segment lexigraphically if sortOrder is DESC.
`sortOrder`: Specifies the order with which to return the matching segments by start time, end time. A null
value indicates that order does not matter.
This PR has:
- [x] been self-reviewed.
- [ ] using the [concurrency checklist](https://github.com/apache/druid/blob/master/dev/code-review/concurrency.md) (Remove this item if the PR doesn't have any relation to concurrency.)
- [x] added documentation for new or modified features or behaviors.
- [ ] a release note entry in the PR description.
- [x] added Javadocs for most classes and all non-trivial methods. Linked related entities via Javadoc links.
- [ ] added or updated version, license, or notice information in [licenses.yaml](https://github.com/apache/druid/blob/master/dev/license.md)
- [x] added comments explaining the "why" and the intent of the code wherever would not be obvious for an unfamiliar reader.
- [x] added unit tests or modified existing tests to cover new code paths, ensuring the threshold for [code coverage](https://github.com/apache/druid/blob/master/dev/code-review/code-coverage.md) is met.
- [ ] added integration tests.
- [x] been tested in a test Druid cluster.
* Add initial draft of MarkDanglingTombstonesAsUnused duty.
* Use overshadowed segments instead of all used segments.
* Add unit test for MarkDanglingSegmentsAsUnused duty.
* Add mock call
* Simplify code.
* Docs
* shorter lines formatting
* metric doc
* More tests, refactor and fix up some logic.
* update javadocs; other review comments.
* Make numCorePartitions as 0 in the TombstoneShardSpec.
* fix up test
* Add tombstone core partition tests
* Update docs/design/coordinator.md
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
* review comment
* Minor cleanup
* Only consider tombstones with 0 core partitions
* Need to register the test shard type to make jackson happy
* test comments
* checkstyle
* fixup misc typos in comments
* Update logic to use overshadowed segments
* minor cleanup
* Rename duty to eternity tombstone instead of dangling. Add test for full eternity tombstone.
* Address review feedback.
---------
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
* Excluding jackson-jaxrs dependency from ranger-plugin-common to address CVE regression introduced by ranger-upgrade: CVE-2019-10202, CVE-2019-10172
* remove the reference to outdated ranger 2.0 from the docs
---------
Co-authored-by: Xavier Léauté <xl+github@xvrl.net>
This PR revives #14978 with a few more bells and whistles. Instead of an unconditional cross-join, we will now split the join condition such that some conditions are now evaluated post-join. To decide what sub-condition goes where, I have refactored DruidJoinRule class to extract unsupported sub-conditions. We build a postJoinFilter out of these unsupported sub-conditions and push to the join.
I think this is a problem as it discards the false return value when the putToKeyBuffer can't store the value because of the limit
Not forwarding the return value at that point may lead to the normal continuation here regardless something was not added to the dictionary like here
This patch introduces a param snapshotTime in the iceberg inputsource spec that allows the user to ingest data files associated with the most recent snapshot as of the given time. This helps the user ingest data based on older snapshots by specifying the associated snapshot time.
This patch also upgrades the iceberg core version to 1.4.1
In the current design, brokers query both data nodes and tasks to fetch the schema of the segments they serve. The table schema is then constructed by combining the schemas of all segments within a datasource. However, this approach leads to a high number of segment metadata queries during broker startup, resulting in slow startup times and various issues outlined in the design proposal.
To address these challenges, we propose centralizing the table schema management process within the coordinator. This change is the first step in that direction. In the new arrangement, the coordinator will take on the responsibility of querying both data nodes and tasks to fetch segment schema and subsequently building the table schema. Brokers will now simply query the Coordinator to fetch table schema. Importantly, brokers will still retain the capability to build table schemas if the need arises, ensuring both flexibility and resilience.
Minor updates to the documentation.
Added prerequisites.
Removed a known issue in MSQ since its no longer valid.
---------
Co-authored-by: 317brian <53799971+317brian@users.noreply.github.com>
* Add system fields to input sources.
Main changes:
1) The SystemField enum defines system fields "__file_uri", "__file_path",
and "__file_bucket". They are associated with each input entity.
2) The SystemFieldInputSource interface can be added to any InputSource
to make it system-field-capable. It sets up serialization of a list
of configured "systemFields" in the JSON form of the input source, and
provides a method getSystemFieldValue for computing the value of each
system field. Cloud object, HDFS, HTTP, and Local now have this.
* Fix various LocalInputSource calls.
* Fix style stuff.
* Fixups.
* Fix tests and coverage.
* better documentation for the differences between arrays and mvds
* add outputType to ExpressionPostAggregator to make docs true
* add output coercion if outputType is defined on ExpressionPostAgg
* updated post-aggregations.md to be consistent with aggregations.md and filters.md and use tables
* Ability to send task types to k8s or worker task runner
* add more tests
* use runnerStrategy to determine task runner
* minor refine
* refine runner strategy config
* move workerType config to upper level
* validate config when application start
Adding the ability to limit the pages sizes of select queries.
We piggyback on the same machinery that is used to control the numRowsPerSegment.
This patch introduces a new context parameter rowsPerPage for which the default value is set to 100000 rows.
This patch also optimizes adding the last selectResults stage only when the previous stages have sorted outputs. Currently for each select query with selectDestination=durableStorage, we used to add this extra selectResults stage.
* sql compatible tri-state native logical filters when druid.expressions.useStrictBooleans=true and druid.generic.useDefaultValueForNull=false, and new druid.generic.useThreeValueLogicForNativeFilters=true
* log.warn if non-default configurations are used to guide operators towards SQL complaint behavior
This PR aims to add the capabilities to:
1. Fetch the realtime segment metadata from the coordinator server view,
2. Adds the ability for workers to query indexers, similar to how brokers do the same for native queries.
Add segmentLoadWait as a query context parameter. If this is true, the controller queries the broker and waits till the segments created (if any) have been loaded by the load rules. The controller also provides this information in the live reports and task reports. If this is false, the controller exits immediately after finishing the query.
This PR updates the library used for Memcached client to AWS Elasticache Client : https://github.com/awslabs/aws-elasticache-cluster-client-memcached-for-java
This enables us to use the option of encrypting data in transit:
Amazon ElastiCache for Memcached now supports encryption of data in transit
For clusters running the Memcached engine, ElastiCache supports Auto Discovery—the ability for client programs to automatically identify all of the nodes in a cache cluster, and to initiate and maintain connections to all of these nodes.
Benefits of Auto Discovery - Amazon ElastiCache
AWS has forked spymemcached 2.12.1, and has since added all the patches included in 2.12.2 and 2.12.3 as part of the 1.2.0 release. So, this can now be considered as an equivalent drop-in replacement.
GitHub - awslabs/aws-elasticache-cluster-client-memcached-for-java: Amazon ElastiCache Cluster Client for Java - enhanced library to connect to ElastiCache clusters.
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/elasticache/AmazonElastiCacheClient.html#AmazonElastiCacheClient--
How to enable TLS with Elasticache
On server side:
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/in-transit-encryption-mc.html#in-transit-encryption-enable-existing-mc
On client side:
GitHub - awslabs/aws-elasticache-cluster-client-memcached-for-java: Amazon ElastiCache Cluster Client for Java - enhanced library to connect to ElastiCache clusters.
* Add IS [NOT] DISTINCT FROM to SQL and join matchers.
Changes:
1) Add "isdistinctfrom" and "notdistinctfrom" native expressions.
2) Add "IS [NOT] DISTINCT FROM" to SQL. It uses the new native expressions
when generating expressions, and is treated the same as equals and
not-equals when generating native filters on literals.
3) Update join matchers to have an "includeNull" parameter that determines
whether we are operating in "equals" mode or "is not distinct from"
mode.
* Main changes:
- Add ARRAY handling to "notdistinctfrom" and "isdistinctfrom".
- Include null in pushed-down filters when using "notdistinctfrom" in a join.
Other changes:
- Adjust join filter analyzer to more explicitly use InDimFilter's ValuesSets,
relying less on remembering to get it right to avoid copies.
* Remove unused "wrap" method.
* Fixes.
* Remove methods we do not need.
* Fix bug with INPUT_REF.
* SQL: Plan non-equijoin conditions as cross join followed by filter.
Druid has previously refused to execute joins with non-equality-based
conditions. This was well-intentioned: the idea was to push people to
write their queries in a different, hopefully more performant way.
But as we're moving towards fuller SQL support, it makes more sense to
allow these conditions to go through with the best plan we can come up
with: a cross join followed by a filter. In some cases this will allow
the query to run, and people will be happy with that. In other cases,
it will run into resource limits during execution. But we should at
least give the query a chance.
This patch also updates the documentation to explain how people can
tell whether their queries are being planned this way.
* cartesian is a word.
* Adjust tests.
* Update docs/querying/datasource.md
Co-authored-by: Benedict Jin <asdf2014@apache.org>
---------
Co-authored-by: Benedict Jin <asdf2014@apache.org>
* save work
* Working
* Fix runner constructor
* Working runner
* extra log lines
* try using lifecycle for everything
* clean up configs
* cleanup /workers call
* Use a single config
* Allow selecting runner
* debug changes
* Work on composite task runner
* Unit tests running
* Add documentation
* Add some javadocs
* Fix spelling
* Use standard libraries
* code review
* fix
* fix
* use taskRunner as string
* checkstyl
---------
Co-authored-by: Suneet Saldanha <suneet@apache.org>
Changes:
- Add new metric `kill/pendingSegments/count` with dimension `dataSource`
- Add tests for `KillStalePendingSegments`
- Reduce no-op logs that spit out for each datasource even when no pending
segments have been deleted. This can get particularly noisy at low values of `indexingPeriod`.
- Refactor the code in `KillStalePendingSegments` for readability and add javadocs
A new monitor SubqueryCountStatsMonitor which emits the metrics corresponding to the subqueries and their execution is now introduced. Moreover, the user can now also use the auto mode to automatically set the number of bytes available per query for the inlining of its subquery's results.
Currently, after an MSQ query, the web console is responsible for waiting for the segments to load. It does so by checking if there are any segments loading into the datasource ingested into, which can cause some issues, like in cases where the segments would never be loaded, or would end up waiting for other ingests as well.
This PR shifts this responsibility to the controller, which would have the list of segments created.
Changes:
[A] Remove config `decommissioningMaxPercentOfMaxSegmentsToMove`
- It is a complicated config 😅 ,
- It is always desirable to prioritize move from decommissioning servers so that
they can be terminated quickly, so this should always be 100%
- It is already handled by `smartSegmentLoading` (enabled by default)
[B] Remove config `maxNonPrimaryReplicantsToLoad`
This was added in #11135 to address two requirements:
- Prevent coordinator runs from getting stuck assigning too many segments to historicals
- Prevent load of replicas from competing with load of unavailable segments
Both of these requirements are now already met thanks to:
- Round-robin segment assignment
- Prioritization in the new coordinator
- Modifications to `replicationThrottleLimit`
- `smartSegmentLoading` (enabled by default)
* prometheus-emitter: add extraLabels parameter
* prometheus-emitter: update readme to include the extraLabels parameter
* prometheus-emitter: remove nullable and surface label name issues
* remove import to make linter happy
Changes
- Increase value of `replicationThrottleLimit` computed by `smartSegmentLoading` from
2% to 5% of total number of used segments.
- Assign replicas to a tier even when some replicas are already being loaded in that tier
- Limit the total number of replicas in load queue at start of run + replica assignments in
the run to the `replicationThrottleLimit`.
i.e. for every tier,
num loading replicas at start of run + num replicas assigned in run <= replicationThrottleLimit
Changes:
- Determine the default value of balancerComputeThreads based on number of
coordinator cpus rather than number of segments. Even if the number of segments
is low and we create more balancer threads, it doesn't hurt the system as threads
would mostly be idle.
- Remove unused field from SegmentLoadQueueManager
Expected values:
- Clusters with ~1M segments typically work with Coordinators having 16 cores or more.
This would give us 8 balancer threads, which is the same as the current maximum.
- On small clusters, even a single thread is enough to do the required balancing work.
### Description
This change enables the `KillUnusedSegments` coordinator duty to be scheduled continuously. Things that prevented this, or made this difficult before were the following:
1. If scheduled at fast enough rate, the duty would find the same intervals to kill for the same datasources, while kill tasks submitted for those same datasources and intervals were already underway, thus wasting task slots on duplicated work.
2. The task resources used by auto kill were previously unbounded. Each duty run period, if unused
segments were found for any datasource, a kill task would be submitted to kill them.
This pr solves for both of these issues:
1. The duty keeps track of the end time of the last interval found when killing unused segments for each datasource, in a in memory map. The end time for each datasource, if found, is used as the start time lower bound, when searching for unused intervals for that same datasource. Each duty run, we remove any datasource keys from this map that are no longer found to match datasources in the system, or in whitelist, and also remove a datasource entry, if there is found to be no unused segments for the datasource, which happens when we fail to find an interval which includes unused segments. Removing the datasource entry from the map, allows for searching for unusedSegments in the datasource from the beginning of time once again
2. The unbounded task resource usage can be mitigated with coordinator dynamic config added as part of ba957a9b97
Operators can configure continous auto kill by providing coordinator runtime properties similar to the following:
```
druid.coordinator.period.indexingPeriod=PT60S
druid.coordinator.kill.period=PT60S
```
And providing sensible limits to the killTask usage via coordinator dynamic properties.
There is a current issue due to inconsistent metadata between worker and controller in MSQ. A controller can receive one set of segments, which are then marked as unused by, say, a compaction job. The worker would be unable to get the segment information as MetadataResource.