* Segments primarily sorted by non-time columns.
Currently, segments are always sorted by __time, followed by the sort
order provided by the user via dimensionsSpec or CLUSTERED BY. Sorting
by __time enables efficient execution of queries involving time-ordering
or granularity. Time-ordering is a simple matter of reading the rows in
stored order, and granular cursors can be generated in streaming fashion.
However, for various workloads, it's better for storage footprint and
query performance to sort by arbitrary orders that do not start with __time.
With this patch, users can sort segments by such orders.
For spec-based ingestion, users add "useExplicitSegmentSortOrder: true" to
dimensionsSpec. The "dimensions" list determines the sort order. To
define a sort order that includes "__time", users explicitly
include a dimension named "__time".
For SQL-based ingestion, users set the context parameter
"useExplicitSegmentSortOrder: true". The CLUSTERED BY clause is then
used as the explicit segment sort order.
In both cases, when the new "useExplicitSegmentSortOrder" parameter is
false (the default), __time is implicitly prepended to the sort order,
as it always was prior to this patch.
The new parameter is experimental for two main reasons. First, such
segments can cause errors when loaded by older servers, due to violating
their expectations that timestamps are always monotonically increasing.
Second, even on newer servers, not all queries can run on non-time-sorted
segments. Scan queries involving time-ordering and any query involving
granularity will not run. (To partially mitigate this, a currently-undocumented
SQL feature "sqlUseGranularity" is provided. When set to false the SQL planner
avoids using "granularity".)
Changes on the write path:
1) DimensionsSpec can now optionally contain a __time dimension, which
controls the placement of __time in the sort order. If not present,
__time is considered to be first in the sort order, as it has always
been.
2) IncrementalIndex and IndexMerger are updated to sort facts more
flexibly; not always by time first.
3) Metadata (stored in metadata.drd) gains a "sortOrder" field.
4) MSQ can generate range-based shard specs even when not all columns are
singly-valued strings. It merely stops accepting new clustering key
fields when it encounters the first one that isn't a singly-valued
string. This is useful because it enables range shard specs on
"someDim" to be created for clauses like "CLUSTERED BY someDim, __time".
Changes on the read path:
1) Add StorageAdapter#getSortOrder so query engines can tell how a
segment is sorted.
2) Update QueryableIndexStorageAdapter, IncrementalIndexStorageAdapter,
and VectorCursorGranularizer to throw errors when using granularities
on non-time-ordered segments.
3) Update ScanQueryEngine to throw an error when using the time-ordering
"order" parameter on non-time-ordered segments.
4) Update TimeBoundaryQueryRunnerFactory to perform a segment scan when
running on a non-time-ordered segment.
5) Add "sqlUseGranularity" context parameter that causes the SQL planner
to avoid using granularities other than ALL.
Other changes:
1) Rename DimensionsSpec "hasCustomDimensions" to "hasFixedDimensions"
and change the meaning subtly: it now returns true if the DimensionsSpec
represents an unchanging list of dimensions, or false if there is
some discovery happening. This is what call sites had expected anyway.
* Fixups from CI.
* Fixes.
* Fix missing arg.
* Additional changes.
* Fix logic.
* Fixes.
* Fix test.
* Adjust test.
* Remove throws.
* Fix styles.
* Fix javadocs.
* Cleanup.
* Smoother handling of null ordering.
* Fix tests.
* Missed a spot on the merge.
* Fixups.
* Avoid needless Filters.and.
* Add timeBoundaryInspector to test.
* Fix tests.
* Fix FrameStorageAdapterTest.
* Fix various tests.
* Use forceSegmentSortByTime instead of useExplicitSegmentSortOrder.
* Pom fix.
* Fix doc.
* Speed up SQL IN using SCALAR_IN_ARRAY.
Main changes:
1) DruidSqlValidator now includes a rewrite of IN to SCALAR_IN_ARRAY, when the size of
the IN is above inFunctionThreshold. The default value of inFunctionThreshold
is 100. Users can restore the prior behavior by setting it to Integer.MAX_VALUE.
2) SearchOperatorConversion now generates SCALAR_IN_ARRAY when converting to a regular
expression, when the size of the SEARCH is above inFunctionExprThreshold. The default
value of inFunctionExprThreshold is 2. Users can restore the prior behavior by setting
it to Integer.MAX_VALUE.
3) ReverseLookupRule generates SCALAR_IN_ARRAY if the set of reverse-looked-up values is
greater than inFunctionThreshold.
* Revert test.
* Additional coverage.
* Update docs/querying/sql-query-context.md
Co-authored-by: Benedict Jin <asdf2014@apache.org>
* New test.
---------
Co-authored-by: Benedict Jin <asdf2014@apache.org>
If lots of keys map to the same value, reversing a LOOKUP call can slow
things down unacceptably. To protect against this, this patch introduces
a parameter sqlReverseLookupThreshold representing the maximum size of an
IN filter that will be created as part of lookup reversal.
If inSubQueryThreshold is set to a smaller value than
sqlReverseLookupThreshold, then inSubQueryThreshold will be used instead.
This allows users to use that single parameter to control IN sizes if they
wish.
A low value of inSubQueryThreshold can cause queries with IN filter to plan as joins more commonly. However, some of these join queries may not get planned as IN filter on data nodes and causes significant perf regression.
* Reverse, pull up lookups in the SQL planner.
Adds two new rules:
1) ReverseLookupRule, which eliminates calls to LOOKUP by doing
reverse lookups.
2) AggregatePullUpLookupRule, which pulls up calls to LOOKUP above
GROUP BY, when the lookup is injective.
Adds configs `sqlReverseLookup` and `sqlPullUpLookup` to control whether
these rules fire. Both are enabled by default.
To minimize the chance of performance problems due to many keys mapping to
the same value, ReverseLookupRule refrains from reversing a lookup if there
are more keys than `inSubQueryThreshold`. The rationale for using this setting
is that reversal works by generating an IN, and the `inSubQueryThreshold`
describes the largest IN the user wants the planner to create.
* Add additional line.
* Style.
* Remove commented-out lines.
* Fix tests.
* Add test.
* Fix doc link.
* Fix docs.
* Add one more test.
* Fix tests.
* Logic, test updates.
* - Make FilterDecomposeConcatRule more flexible.
- Make CalciteRulesManager apply reduction rules til fixpoint.
* Additional tests, simplify code.
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
Co-authored-by: Victoria Lim <lim.t.victoria@gmail.com>
* Always return sketches from DS_HLL, DS_THETA, DS_QUANTILES_SKETCH.
These aggregation functions are documented as creating sketches. However,
they are planned into native aggregators that include finalization logic
to convert the sketch to a number of some sort. This creates an
inconsistency: the functions sometimes return sketches, and sometimes
return numbers, depending on where they lie in the native query plan.
This patch changes these SQL aggregators to _never_ finalize, by using
the "shouldFinalize" feature of the native aggregators. It already
existed for theta sketches. This patch adds the feature for hll and
quantiles sketches.
As to impact, Druid finalizes aggregators in two cases:
- When they appear in the outer level of a query (not a subquery).
- When they are used as input to an expression or finalizing-field-access
post-aggregator (not any other kind of post-aggregator).
With this patch, the functions will no longer be finalized in these cases.
The second item is not likely to matter much. The SQL functions all declare
return type OTHER, which would be usable as an input to any other function
that makes sense and that would be planned into an expression.
So, the main effect of this patch is the first item. To provide backwards
compatibility with anyone that was depending on the old behavior, the
patch adds a "sqlFinalizeOuterSketches" query context parameter that
restores the old behavior.
Other changes:
1) Move various argument-checking logic from runtime to planning time in
DoublesSketchListArgBaseOperatorConversion, by adding an OperandTypeChecker.
2) Add various JsonIgnores to the sketches to simplify their JSON representations.
3) Allow chaining of ExpressionPostAggregators and other PostAggregators
in the SQL layer.
4) Avoid unnecessary FieldAccessPostAggregator wrapping in the SQL layer,
now that expressions can operate on complex inputs.
5) Adjust return type to thetaSketch (instead of OTHER) in
ThetaSketchSetBaseOperatorConversion.
* Fix benchmark class.
* Fix compilation error.
* Fix ThetaSketchSqlAggregatorTest.
* Hopefully fix ITAutoCompactionTest.
* Adjustment to ITAutoCompactionTest.
* Add feature flag for sql planning of TimeBoundary queries
* fixup! Add feature flag for sql planning of TimeBoundary queries
* Add documentation for enableTimeBoundaryPlanning
* fixup! Add documentation for enableTimeBoundaryPlanning