Changes
- Add a `DruidException` which contains a user-facing error message, HTTP response code
- Make `EntryExistsException` extend `DruidException`
- If metadata store max_allowed_packet limit is violated while inserting a new task, throw
`DruidException` with response code 400 (bad request) to prevent retries
- Add `SQLMetadataConnector.isRootCausePacketTooBigException` with impl for MySQL
The class apparently only exists to add a toString()
method to Indexes, which basically just crashes any debugger
on any meaningfully sized index. It's a pointless
abstract class that basically only causes pain.
In this PR, we are enhancing KafkaEmitter, to emit metadata about published segments (SegmentMetadataEvent) into a Kafka topic. This segment metadata information that gets published into Kafka, can be used by any other downstream services to query Druid intelligently based on the segments published. The segment metadata gets published into kafka topic in json string format similar to other events.
### Description
This change allows for consideration of the input format and compression when computing how to split the input files among available tasks, in MSQ ingestion, when considering the value of the `maxInputBytesPerWorker` query context parameter. This query parameter allows users to control the maximum number of bytes, with granularity of input file / object, that ingestion tasks will be assigned to ingest. With this change, this context parameter now denotes the estimated weighted size in bytes of the input to split on, with consideration for input format and compression format, rather than the actual file size, reported by the file system. We assume uncompressed newline delimited json as a baseline, with scaling factor of `1`. This means that when computing the byte weight that a file has towards the input splitting, we take the file size as is, if uncompressed json, 1:1. It was found during testing that gzip compressed json, and parquet, has scale factors of `4` and `8` respectively, meaning that each byte of data is weighted 4x and 8x respectively, when computing input splits. This weighted byte scaling is only considered for MSQ ingestion that uses either LocalInputSource or CloudObjectInputSource at the moment. The default value of the `maxInputBytesPerWorker` query context parameter has been updated from 10 GiB, to 512 MiB
This PR adds a new interface to control how SegmentMetadataCache chooses ColumnType when faced with differences between segments for SQL schemas which are computed, exposed as druid.sql.planner.metadataColumnTypeMergePolicy and adds a new 'least restrictive type' mode to allow choosing the type that data across all segments can best be coerced into and sets this as the default behavior.
This is a behavior change around when segment driven schema migrations take effect for the SQL schema. With latestInterval, the SQL schema will be updated as soon as the first job with the new schema has published segments, while using leastRestrictive, the schema will only be updated once all segments are reindexed to the new type. The benefit of leastRestrictive is that it eliminates a bunch of type coercion errors that can happen in SQL when types are varied across segments with latestInterval because the newest type is not able to correctly represent older data, such as if the segments have a mix of ARRAY and number types, or any other combinations that lead to odd query plans.
* Expr getCacheKey now delegates to children
* Removed the LOOKUP_EXPR_CACHE_KEY as we do not need it
* Adding an unit test
* Update processing/src/main/java/org/apache/druid/math/expr/Expr.java
Co-authored-by: Clint Wylie <cjwylie@gmail.com>
---------
Co-authored-by: Clint Wylie <cjwylie@gmail.com>
* Fixing an issue with filtering on a single dimension by converting In filter to a selector filter as needed with Filters.toFilter
* Adding a test so that any future refactoring does not break this behavior
* Made comment a bit more meaningful
* Be able to load segments on Peons
This change introduces a new config on WorkerConfig
that indicates how many bytes of each storage
location to use for storage of a task. Said config
is divided up amongst the locations and slots
and then used to set TaskConfig.tmpStorageBytesPerTask
The Peons use their local task dir and
tmpStorageBytesPerTask as their StorageLocations for
the SegmentManager such that they can accept broadcast
segments.
Changes:
- Replace `OverlordHelper` with `OverlordDuty` to align with `CoordinatorDuty`
- Each duty has a `run()` method and defines a `Schedule` with an initial delay and period.
- Update existing duties `TaskLogAutoCleaner` and `DurableStorageCleaner`
- Add utility class `Configs`
- Update log, error messages and javadocs
- Other minor style improvements
Changes:
- Do not allow retention rules for any datasource or cluster to be null
- Allow empty rules at the datasource level but not at the cluster level
- Add validation to ensure that `druid.manager.rules.defaultRule` is always set correctly
- Minor style refactors
* fix issues with filtering nulls on values coerced to numeric types
* fix issues with 'auto' type numeric columns in default value mode
* optimize variant typed columns without nested data
* more tests for 'auto' type column ingestion
This PR fixes an issue that could occur if druid.query.scheduler.numThreads is configured and any exception occurs after QueryScheduler.run has been called to create a Sequence. This would result in total and/or lane specific locks being acquired, but because the sequence was not actually being evaluated, the "baggage" which typically releases these locks was not being executed. An example of how this can happen is if a group-by having filter, which wraps and transforms this sequence happens to explode while wrapping the sequence. The end result is that the locks are acquired, but never released, eventually halting the ability to execute any queries.
This PR fixes an issue when using 'auto' encoded LONG typed columns and the 'vectorized' query engine. These columns use a delta based bit-packing mechanism, and errors in the vectorized reader would cause it to incorrectly read column values for some bit sizes (1 through 32 bits). This is a regression caused by #11004, which added the optimized readers to improve performance, so impacts Druid versions 0.22.0+.
While writing the test I finally got sad enough about IndexSpec not having a "builder", so I made one, and switched all the things to use it. Apologies for the noise in this bug fix PR, the only real changes are in VSizeLongSerde, and the tests that have been modified to cover the buggy behavior, VSizeLongSerdeTest and ExpressionVectorSelectorsTest. Everything else is just cleanup of IndexSpec usage.
* Make LoggingEmitter more useful
* Skip code coverage for facade classes
* fix spellcheck
* code review
* fix dependency
* logging.md
* fix checkstyle
* Add back jacoco version to main pom
* TimeBoundary: Use cursor when datasource is not a regular table.
Fixes a bug where TimeBoundary could return incorrect results with
INNER Join or inline data.
* Addl Javadocs.
* Fix two concurrency issues with segment fetching.
1) SegmentLocalCacheManager: Fix a concurrency issue where certain directory
cleanup happened outside of directoryWriteRemoveLock. This created the
possibility that segments would be deleted by one thread, while being
actively downloaded by another thread.
2) TaskDataSegmentProcessor (MSQ): Fix a concurrency issue when two stages
in the same process both use the same segment. For example: a self-join
using distributed sort-merge. Prior to this change, the two stages could
delete each others' segments.
3) ReferenceCountingResourceHolder: increment() returns a new ResourceHolder,
rather than a Releaser. This allows it to be passed to callers without them
having to hold on to both the original ResourceHolder *and* a Releaser.
4) Simplify various interfaces and implementations by using ResourceHolder
instead of Pair and instead of split-up fields.
* Add test.
* Fix style.
* Remove Releaser.
* Updates from master.
* Add some GuardedBys.
* Use the correct GuardedBy.
* Adjustments.
* Improved handling for zero-length intervals.
1) Return an empty list from VersionedIntervalTimeline.lookup when
provided with an empty interval. (The logic doesn't quite work when
intervals are empty, which led to #14129.)
2) Don't return zero-length intervals from JodaUtils.condenseIntervals.
3) Detect "incorrect" comparator in JodaUtils.condenseIntervals, and
recreate the SortedSet if needed. (Not strictly related to the theme
of this patch. Just another thing in the same file.)
4) Remove unused method JodaUtils.containOverlappingIntervals.
Fixes#14129.
* Fix TimewarpOperatorTest.
* MSQ: Subclass CalciteJoinQueryTest, other supporting changes.
The main change is the new tests: we now subclass CalciteJoinQueryTest
in CalciteSelectJoinQueryMSQTest twice, once for Broadcast and once for
SortMerge.
Two supporting production changes for default-value mode:
1) InputNumberDataSource is marked as concrete, to allow leftFilter to
be pushed down to it.
2) In default-value mode, numeric frame field readers can now return nulls.
This is necessary when stacking joins on top of joins: nulls must be
preserved for semantics that match broadcast joins and native queries.
3) In default-value mode, StringFieldReader.isNull returns true on empty
strings in addition to nulls. This is more consistent with the behavior
of the selectors, which map empty strings to null as well in that mode.
As an effect of change (2), the InsertTimeNull change from #14020 (to
replace null timestamps with default timestamps) is reverted. IMO, this
is fine, as either behavior is defensible, and the change from #14020
hasn't been released yet.
* Adjust tests.
* Style fix.
* Additional tests.
* return task status reported by peon
* Write TaskStatus to file in AbstractTask.cleanUp
* Get TaskStatus from task log
* Fix merge conflicts in AbstractTaskTest
* Add unit tests for TaskLogPusher, TaskLogStreamer, NoopTaskLogs to satisfy code coverage
* Add license headerss
* Fix style
* Remove unknown exception declarations
* Allow for Log4J to be configured for peons but still ensure console logging is enforced
This change will allow for log4j to be configured for peons but require console logging is still
configured for them to ensure peon logs are saved to deep storage.
Also fixed the test ConsoleLoggingEnforcementTest to use a valid appender for the non console
Config as the previous config was incorrect and would never return a logger.
* fix checkstyle
* add warning to logger when it overwrites all loggers to be console
* optimize calls for altering logging config for ConsoleLoggingEnforcementConfigurationFactory
add getName to the druid logger class
* update docs, and error message
* edit docs to be more clear
* fix checkstyle issues
* CI fixes - LoggerTest code coverage and fix spelling issue for logging docs
* Updating segment map function for QueryDataSource to ensure group by of group by of join data source gets into proper segment map function path
* Adding unit tests for the failed case
* There you go coverage bot, be happy now
* MSQ: Support for querying lookup and inline data directly.
Main changes:
1) Add of LookupInputSpec and DataSourcePlan.forLookup.
2) Add InlineInputSpec, and modify of DataSourcePlan.forInline to use
this instead of an ExternalInputSpec with JSON. This allows the inline
data to act as the right-hand side of a join, if needed.
Supporting changes:
1) Modify JoinDataSource's leftFilter validation to be a little less
strict: it's now OK with leftFilter being attached to any concrete
leaf (no children) datasource, rather than requiring it be a table.
This allows MSQ to create JoinDataSource with InputNumberDataSource
as the base.
2) Add SegmentWranglerModule to CliIndexer, CliPeon. This allows them to
query lookups and inline data directly.
* Updates based on CI.
* Additional tests.
* Style fix.
* Remove unused import.
* MSQ: Support multiple result columns with the same name.
This is allowed in SQL, and is supported by the regular SQL endpoint.
We retain a validation that INSERT ... SELECT does not allow multiple
columns with the same name, because column names in segments must be
unique.
changes:
* adds support for boolean inputs to the classic long dimension indexer, which plays nice with LONG being the semi official boolean type in Druid, and even nicer when druid.expressions.useStrictBooleans is set to true, since the sampler when using the new 'auto' schema when 'useSchemaDiscovery' is specified on the dimensions spec will call the type out as LONG
* fix bugs with sampler response and new schema discovery stuff incorrectly using classic 'json' type for the logical schema instead of the new 'auto' type
* Frames: Ensure nulls are read as default values when appropriate.
Fixes a bug where LongFieldWriter didn't write a properly transformed
zero when writing out a null. This had no meaningful effect in SQL-compatible
null handling mode, because the field would get treated as a null anyway.
But it does have an effect in default-value mode: it would cause Long.MIN_VALUE
to get read out instead of zero.
Also adds NullHandling checks to the various frame-based column selectors,
allowing reading of nullable frames by servers in default-value mode.
Fixes#13837.
### Description
This change allows for input source type security in the native task layer.
To enable this feature, the user must set the following property to true:
`druid.auth.enableInputSourceSecurity=true`
The default value for this property is false, which will continue the existing functionality of needing authorization to write to the respective datasource.
When this config is enabled, the users will be required to be authorized for the following resource action, in addition to write permission on the respective datasource.
`new ResourceAction(new Resource(ResourceType.EXTERNAL, {INPUT_SOURCE_TYPE}, Action.READ`
where `{INPUT_SOURCE_TYPE}` is the type of the input source being used;, http, inline, s3, etc..
Only tasks that provide a non-default implementation of the `getInputSourceResources` method can be submitted when config `druid.auth.enableInputSourceSecurity=true` is set. Otherwise, a 400 error will be thrown.
* smarter nested column index utilization
changes:
* adds skipValueRangeIndexScale and skipValuePredicateIndexScale to ColumnConfig (e.g. DruidProcessingConfig) available as system config via druid.processing.indexes.skipValueRangeIndexScale and druid.processing.indexes.skipValuePredicateIndexScale
* NestedColumnIndexSupplier uses skipValueRangeIndexScale and skipValuePredicateIndexScale to multiply by the total number of rows to be processed to determine the threshold at which we should no longer consider using bitmap indexes because it will be too many operations
* Default values for skipValueRangeIndexScale and skipValuePredicateIndexScale have been initially set to 0.08, but are separate to allow independent tuning
* these are not documented on purpose yet because they are kind of hard to explain, the mainly exist to help conduct larger scale experiments than the jmh benchmarks used to derive the initial set of values
* these changes provide a pretty sweet performance boost for filter processing on nested columns
* Always use file sizes when determining batch ingest splits.
Main changes:
1) Update CloudObjectInputSource and its subclasses (S3, GCS,
Azure, Aliyun OSS) to use SplitHintSpecs in all cases. Previously, they
were only used for prefixes, not uris or objects.
2) Update ExternalInputSpecSlicer (MSQ) to consider file size. Previously,
file size was ignored; all files were treated as equal weight when
determining splits.
A side effect of these changes is that we'll make additional network
calls to find the sizes of objects when users specify URIs or objects
as opposed to prefixes. IMO, this is worth it because it's the only way
to respect the user's split hint and task assignment settings.
Secondary changes:
1) S3, Aliyun OSS: Use getObjectMetadata instead of listObjects to get
metadata for a single object. This is a simpler call that is also
expected to be less expensive.
2) Azure: Fix a bug where getBlobLength did not populate blob
reference attributes, and therefore would not actually retrieve the
blob length.
3) MSQ: Align dynamic slicing logic between ExternalInputSpecSlicer and
TableInputSpecSlicer.
4) MSQ: Adjust WorkerInputs to ensure there is always at least one
worker, even if it has a nil slice.
* Add msqCompatible to testGroupByWithImpossibleTimeFilter.
* Fix tests.
* Add additional tests.
* Remove unused stuff.
* Remove more unused stuff.
* Adjust thresholds.
* Remove irrelevant test.
* Fix comments.
* Fix bug.
* Updates.
changes:
* introduce ColumnFormat to separate physical storage format from logical type. ColumnFormat is now used instead of ColumnCapabilities to get column handlers for segment creation
* introduce new 'auto' type indexer and merger which produces a new common nested format of columns, which is the next logical iteration of the nested column stuff. Essentially this is an automatic type column indexer that produces the most appropriate column for the given inputs, making either STRING, ARRAY<STRING>, LONG, ARRAY<LONG>, DOUBLE, ARRAY<DOUBLE>, or COMPLEX<json>.
* revert NestedDataColumnIndexer, NestedDataColumnMerger, NestedDataColumnSerializer to their version pre #13803 behavior (v4) for backwards compatibility
* fix a bug in RoaringBitmapSerdeFactory if anything actually ever wrote out an empty bitmap using toBytes and then later tried to read it (the nerve!)
* select sum(c) on an unnested column now does not return 'Type mismatch' error and works properly
* Making sure an inner join query works properly
* Having on unnested column with a group by now works correctly
* count(*) on an unnested query now works correctly
While using intermediateSuperSorterStorageMaxLocalBytes the super sorter was retaining references of the memory allocator.
The fix clears the current outputChannel when close() is called on the ComposingWritableFrameChannel.java
* Reworking s3 connector with
1. Adding retries
2. Adding max fetch size
3. Using s3Utils for most of the api's
4. Fixing bugs in DurableStorageCleaner
5. Moving to Iterator for listDir call
array columns!
changes:
* add support for storing nested arrays of string, long, and double values as specialized nested columns instead of breaking them into separate element columns
* nested column type mimic behavior means that columns ingested with only root arrays of primitive values will be ARRAY typed columns
* neat test refactor stuff
* add v4 segment test
* add array element indexes
* add tests for unnest and array columns
* fix unnest column value selector cursor handling of null and empty arrays
* Refactoring and bug fixes on top of unnest. The filter now is passed inside the unnest cursors. Added tests for scenarios such as
1. filter on unnested column which involves a left filter rewrite
2. filter on unnested virtual column which pushes the filter to the right only and involves no rewrite
3. not filters
4. SQL functions applied on top of unnested column
5. null present in first row of the column to be unnested
changes:
* fixes inconsistent handling of byte[] values between ExprEval.bestEffortOf and ExprEval.ofType, which could cause byte[] values to end up as java toString values instead of base64 encoded strings in ingest time transforms
* improved ExpressionTransform binding to re-use ExprEval.bestEffortOf when evaluating a binding instead of throwing it away
* improved ExpressionTransform array handling, added RowFunction.evalDimension that returns List<String> to back Row.getDimension and remove the automatic coercing of array types that would typically happen to expression transforms unless using Row.getDimension
* added some tests for ExpressionTransform with array inputs
* improved ExpressionPostAggregator to use partial type information from decoration
* migrate some test uses of InputBindings.forMap to use other methods
* Adds new implementation of 'frontCoded' string encoding strategy, which writes out a v1 FrontCodedIndexed which stores buckets on a prefix of the previous value instead of the first value in the bucket
* Refactoring and bug fixes on top of unnest. The filter now is passed inside the unnest cursors. Added tests for scenarios such as
1. filter on unnested column which involves a left filter rewrite
2. filter on unnested virtual column which pushes the filter to the right only and involves no rewrite
3. not filters
4. SQL functions applied on top of unnested column
5. null present in first row of the column to be unnested
* Various changes and fixes to UNNEST.
Native changes:
1) UnnestDataSource: Replace "column" and "outputName" with "virtualColumn".
This enables pushing expressions into the datasource. This in turn
allows us to do the next thing...
2) UnnestStorageAdapter: Logically apply query-level filters and virtual
columns after the unnest operation. (Physically, filters are pulled up,
when possible.) This is beneficial because it allows filters and
virtual columns to reference the unnested column, and because it is
consistent with how the join datasource works.
3) Various documentation updates, including declaring "unnest" as an
experimental feature for now.
SQL changes:
1) Rename DruidUnnestRel (& Rule) to DruidUnnestRel (& Rule). The rel
is simplified: it only handles the UNNEST part of a correlated join.
Constant UNNESTs are handled with regular inline rels.
2) Rework DruidCorrelateUnnestRule to focus on pulling Projects from
the left side up above the Correlate. New test testUnnestTwice verifies
that this works even when two UNNESTs are stacked on the same table.
3) Include ProjectCorrelateTransposeRule from Calcite to encourage
pushing mappings down below the left-hand side of the Correlate.
4) Add a new CorrelateFilterLTransposeRule and CorrelateFilterRTransposeRule
to handle pulling Filters up above the Correlate. New tests
testUnnestWithFiltersOutside and testUnnestTwiceWithFilters verify
this behavior.
5) Require a context feature flag for SQL UNNEST, since it's undocumented.
As part of this, also cleaned up how we handle feature flags in SQL.
They're now hooked into EngineFeatures, which is useful because not
all engines support all features.
With SuperSorter using the PartitionedOutputChannels for sorting, it might OOM on inputs of reasonable size because the channel consists of both the writable frame channel and the frame allocator, both of which are not required once the output channel has been written to.
This change adds a readOnly to the output channel which contains only the readable channel, due to which unnecessary memory references to the writable channel and the memory allocator are lost once the output channel has been written to, preventing the OOM.
* Window planning: use collation traits, improve subquery logic.
SQL changes:
1) Attach RelCollation (sorting) trait to any PartialDruidQuery
that ends in AGGREGATE or AGGREGATE_PROJECT. This allows planning to
take advantage of the fact that Druid sorts by dimensions when
doing aggregations.
2) Windowing: inspect RelCollation trait from input, and insert naiveSort
if, and only if, necessary.
3) Windowing: add support for Project after Window, when the Project
is a simple mapping. Helps eliminate subqueries.
4) DruidRules: update logic for considering subqueries to reflect that
subqueries are not required to be GroupBys, and that we have a bunch
of new Stages now. With all of this evolution that has happened, the
old logic didn't quite make sense.
Native changes:
1) Use merge sort (stable) rather than quicksort when sorting
RowsAndColumns. Makes it easier to write test cases for plans that
involve re-sorting the data.
* Changes from review.
* Mark the bad test as failing.
* Additional update.
* Fix failingTest.
* Fix tests.
* Mark a var final.
* Improve memory efficiency of WrappedRoaringBitmap.
Two changes:
1) Use an int[] for sizes 4 or below.
2) Remove the boolean compressRunOnSerialization. Doesn't save much
space, but it does save a little, and it isn't adding a ton of value
to have it be configurable. It was originally configurable in case
anything broke when enabling it, but it's been a while and nothing
has broken.
* Slight adjustment.
* Adjust for inspection.
* Updates.
* Update snaps.
* Update test.
* Adjust test.
* Fix snaps.
* use custom case operator conversion instead of direct operator conversion, to produce native nvl expression for SQL NVL and 2 argument COALESCE, and add optimization for certain case filters from coalesce and nvl statements
* Sort-merge join and hash shuffles for MSQ.
The main changes are in the processing, multi-stage-query, and sql modules.
processing module:
1) Rename SortColumn to KeyColumn, replace boolean descending with KeyOrder.
This makes it nicer to model hash keys, which use KeyOrder.NONE.
2) Add nullability checkers to the FieldReader interface, and an
"isPartiallyNullKey" method to FrameComparisonWidget. The join
processor uses this to detect null keys.
3) Add WritableFrameChannel.isClosed and OutputChannel.isReadableChannelReady
so callers can tell which OutputChannels are ready for reading and which
aren't.
4) Specialize FrameProcessors.makeCursor to return FrameCursor, a random-access
implementation. The join processor uses this to rewind when it needs to
replay a set of rows with a particular key.
5) Add MemoryAllocatorFactory, which is embedded inside FrameWriterFactory
instead of a particular MemoryAllocator. This allows FrameWriterFactory
to be shared in more scenarios.
multi-stage-query module:
1) ShuffleSpec: Add hash-based shuffles. New enum ShuffleKind helps callers
figure out what kind of shuffle is happening. The change from SortColumn
to KeyColumn allows ClusterBy to be used for both hash-based and sort-based
shuffling.
2) WorkerImpl: Add ability to handle hash-based shuffles. Refactor the logic
to be more readable by moving the work-order-running code to the inner
class RunWorkOrder, and the shuffle-pipeline-building code to the inner
class ShufflePipelineBuilder.
3) Add SortMergeJoinFrameProcessor and factory.
4) WorkerMemoryParameters: Adjust logic to reserve space for output frames
for hash partitioning. (We need one frame per partition.)
sql module:
1) Add sqlJoinAlgorithm context parameter; can be "broadcast" or
"sortMerge". With native, it must always be "broadcast", or it's a
validation error. MSQ supports both. Default is "broadcast" in
both engines.
2) Validate that MSQs do not use broadcast join with RIGHT or FULL join,
as results are not correct for broadcast join with those types. Allow
this in native for two reasons: legacy (the docs caution against it,
but it's always been allowed), and the fact that it actually *does*
generate correct results in native when the join is processed on the
Broker. It is much less likely that MSQ will plan in such a way that
generates correct results.
3) Remove subquery penalty in DruidJoinQueryRel when using sort-merge
join, because subqueries are always required, so there's no reason
to penalize them.
4) Move previously-disabled join reordering and manipulation rules to
FANCY_JOIN_RULES, and enable them when using sort-merge join. Helps
get to better plans where projections and filters are pushed down.
* Work around compiler problem.
* Updates from static analysis.
* Fix @param tag.
* Fix declared exception.
* Fix spelling.
* Minor adjustments.
* wip
* Merge fixups
* fixes
* Fix CalciteSelectQueryMSQTest
* Empty keys are sortable.
* Address comments from code review. Rename mux -> mix.
* Restore inspection config.
* Restore original doc.
* Reorder imports.
* Adjustments
* Fix.
* Fix imports.
* Adjustments from review.
* Update header.
* Adjust docs.
This function is notorious for causing memory exhaustion and excessive
CPU usage; so much so that it was valuable to work around it in the
SQL planner in #13206. Hopefully, a warning comment will encourage
developers to stay away and come up with solutions that do not involve
computing all possible buckets.
You can now do the following operations with TupleSketches in Post Aggregation Step
Get the Sketch Output as Base64 String
Provide a constant Tuple Sketch in post-aggregation step that can be used in Set Operations
Get the Estimated Value(Sum) of Summary/Metrics Objects associated with Tuple Sketch
The FiniteFirehoseFactory and InputRowParser classes were deprecated in 0.17.0 (#8823) in favor of InputSource & InputFormat. This PR removes the FiniteFirehoseFactory and all its implementations along with classes solely used by them like Fetcher (Used by PrefetchableTextFilesFirehoseFactory). Refactors classes including tests using FiniteFirehoseFactory to use InputSource instead.
Removing InputRowParser may not be as trivial as many classes that aren't deprecated depends on it (with no alternatives), like EventReceiverFirehoseFactory. Hence FirehoseFactory, EventReceiverFirehoseFactory, and Firehose are marked deprecated.
* move numeric null value coercion out of expression processing engine
* add ExprEval.valueOrDefault() to allow consumers to automatically coerce to default values
* rename Expr.buildVectorized as Expr.asVectorProcessor more consistent naming with Function and ApplyFunction; javadocs for some stuff
* Speed up composite key joins on IndexedTable.
Prior to this patch, IndexedTable indexes are sorted IntList. This works
great when we have a single-column join key: we simply retrieve the list
and we know what rows match. However, when we have a composite key, we
need to merge the sorted lists. This is inefficient when one is very dense
and others are very sparse.
This patch switches from sorted IntList to IntSortedSet, and changes
to the following intersection algorithm:
1) Initialize the intersection set to the smallest matching set from the
various parts of the composite key.
2) For each element in that smallest set, check other sets for that element.
If any do *not* include it, then remove the element from the intersection
set.
This way, complexity scales with the size of the smallest set, not the
largest one.
* RangeIntSet stuff.
* merge druid-core, extendedset, and druid-hll into druid-processing to simplify everything
* fix poms and license stuff
* mockito is evil
* allow reset of JvmUtils RuntimeInfo if tests used static injection to override
* fix array_agg to work with complex types and bugs with expression aggregator complex array handling
* more consistent handling of array expressions, numeric arrays more consistently honor druid.generic.useDefaultValueForNull, fix array_ordinal sql output type
* Allow users to add additional metadata to ingestion metrics
When submitting an ingestion spec, users may pass a map of metadata
in the ingestion spec config that will be added to ingestion metrics.
This will make it possible for operators to tag metrics with other
metadata that doesn't necessarily line up with the existing tags
like taskId.
Druid clusters that ingest these metrics can take advantage of the
nested data columns feature to process this additional metadata.
* rename to tags
* docs
* tests
* fix test
* make code cov happy
* checkstyle
changes:
* modified druid schema column type compution to special case COMPLEX<json> handling to choose COMPLEX<json> if any column in any segment is COMPLEX<json>
* NestedFieldVirtualColumn can now work correctly on any type of column, returning either a column selector if a root path, or nil selector if not
* fixed a random bug with NilVectorSelector when using a vector size larger than the default and druid.generic.useDefaultValueForNull=false would have the nulls vector set to all false instead of true
* fixed an overly aggressive check in ExprEval.ofType when handling complex types which would try to treat any string as base64 without gracefully falling back if it was not in fact base64 encoded, along with special handling for complex<json>
* added ExpressionVectorSelectors.castValueSelectorToObject and ExpressionVectorSelectors.castObjectSelectorToNumeric as convience methods to cast vector selectors using cast expressions without the trouble of constructing an expression. the polymorphic nature of the non-vectorized engine (and significantly larger overhead of non-vectorized expression processing) made adding similar methods for non-vectorized selectors less attractive and so have not been added at this time
* fix inconsistency between nested column indexer and serializer in handling values (coerce non primitive and non arrays of primitives using asString)
* ExprEval best effort mode now handles byte[] as string
* added test for ExprEval.bestEffortOf, and add missing conversion cases that tests uncovered
* more tests more better
* Fallback virtual column
This virtual columns enables falling back to another column if
the original column doesn't exist. This is useful when doing
column migrations and you have some old data with column X,
new data with column Y and you want to use Y if it exists, X
otherwise so that you can run a consistent query against all of
the data.
* Adjust Operators to be Pausable
This enables "merge" style operations that
combine multiple streams.
This change includes a naive implementation
of one such merge operator just to provide
concrete evidence that the refactoring is
effective.
* adds the SQL component of the native unnest functionality in Druid to unnest SQL queries on a table dimension, virtual column or a constant array and convert them into native Druid queries
* unnest in SQL is implemented as a combination of Correlate (the comma join part) and Uncollect (the unnest part)
* discover nested columns when using nested column indexer for schemaless
* move useNestedColumnIndexerForSchemaDiscovery from AppendableIndexSpec to DimensionsSpec
* Semantic Implementations for ArrayListRAC
This adds implementations of semantic interfaces
to optimize (eliminate object creation) the
window processing on top of an ArrayListSegment.
Tests are also added to cover the interplay
between the semantic interfaces that are expected
for this use case
* Kinesis: More robust default fetch settings.
1) Default recordsPerFetch and recordBufferSize based on available memory
rather than using hardcoded numbers. For this, we need an estimate
of record size. Use 10 KB for regular records and 1 MB for aggregated
records. With 1 GB heaps, 2 processors per task, and nonaggregated
records, recordBufferSize comes out to the same as the old
default (10000), and recordsPerFetch comes out slightly lower (1250
instead of 4000).
2) Default maxRecordsPerPoll based on whether records are aggregated
or not (100 if not aggregated, 1 if aggregated). Prior default was 100.
3) Default fetchThreads based on processors divided by task count on
Indexers, rather than overall processor count.
4) Additionally clean up the serialized JSON a bit by adding various
JsonInclude annotations.
* Updates for tests.
* Additional important verify.
* single typed "root" only nested columns now mimic "regular" columns of those types
* incremental index can now use nested column indexer instead of string indexer for discovered columns
* Addition of NaiveSortMaker and Default implementation
Add the NaiveSortMaker which makes a sorter
object and a default implementation of the
interface.
This also allows us to plan multiple different window
definitions on the same query.
* Validate response headers and fix exception logging
A class of QueryException were throwing away their
causes making it really hard to determine what's
going wrong when something goes wrong in the SQL
planner specifically. Fix that and adjust tests
to do more validation of response headers as well.
We allow 404s and 307s to be returned even without
authorization validated, but others get converted to 403
* Unify the handling of HTTP between SQL and Native
The SqlResource and QueryResource have been
using independent logic for things like error
handling and response context stuff. This
became abundantly clear and painful during a
change I was making for Window Functions, so
I unified them into using the same code for
walking the response and serializing it.
Things are still not perfectly unified (it would
be the absolute best if the SqlResource just
took SQL, planned it and then delegated the
query run entirely to the QueryResource), but
this refactor doesn't take that fully on.
The new code leverages async query processing
from our jetty container, the different
interaction model with the Resource means that
a lot of tests had to be adjusted to align with
the async query model. The semantics of the
tests remain the same with one exception: the
SqlResource used to not log requests that failed
authorization checks, now it does.
This PR expands `StringDimensionIndexer` to handle conversion of `byte[]` to base64 encoded strings, rather than the current behavior of calling java `toString`.
This issue was uncovered by a regression of sorts introduced by #13519, which updated the protobuf extension to directly convert stuff to java types, resulting in `bytes` typed values being converted as `byte[]` instead of a base64 string which the previous JSON based conversion created. While outputting `byte[]` is more consistent with other input formats, and preferable when the bytes can be consumed directly (such as complex types serde), when fed to a `StringDimensionIndexer`, it resulted in an ugly java `toString` because `processRowValsToUnsortedEncodedKeyComponent` is fed the output of `row.getRaw(..)`. Converting `byte[]` to a base64 string within `StringDimensionIndexer` is consistent with the behavior of calling `row.getDimension(..)` which does do this coercion (and why many tests on binary types appeared to be doing the expected thing).
I added some protobuf `bytes` tests, but they don't really hit the new `StringDimensionIndexer` behavior because they operate on the `InputRow` directly, and call `getDimension` to validate stuff. The parser based version still uses the old conversion mechanisms, so when not using a flattener incorrectly calls `toString` on the `ByteString`. I have encoded this behavior in the test for now, if we either update the parser to use the new flattener or just .. remove parsers we can remove this test stuff.
* bump nested column format version
changes:
* nested field files are now named by their position in field paths list, rather than directly by the path itself. this fixes issues with valid json properties with commas and newlines breaking the csv file meta.smoosh
* update StructuredDataProcessor to deal in NestedPathPart to be consistent with other abstract path handling rather than building JQ syntax strings directly
* add v3 format segment and test
This commit fixes a bug with nested column "value set" indexes caused by not properly
validating that the globalId looked up for value is present in the global dictionary prior to
looking it up in the local dictionary, which when "adjusting" the global ids for value type
can cause incorrect selection of value indexes.
To use an example of a variant typed nested column with 3 values `["1", null, -2]`.
The string dictionary is `[null, "1"]`, the long dictionary is `[-2]` and our local dictionary is `[0, 1, 2]`.
The code for variant typed indexes checks if the value is present in all global dictionaries
and returns indexes for all matches. So in this case, we first lookup "1" in the string dictionary,
find it at global id 1, all is good. Now, we check the long dictionary for `1`, which due to
`-(insertionpoint + 1)` gives us `-(1 + 2) = -2`. Since the global id space is actually stacked
dictionaries, global ids for long and double values must be "adjusted" by the size of string
dictionary, and size of string + size of long for doubles.
Prior to this patch we were not checking that the globalId is 0 or larger, we then immediately
looked up the `localDictionary.indexOf(-2 + adjustLong) = localDictionary.indexOf(-2 + 2) = localDictionary.indexOf(0)` ... which is an actual value contained in the dictionary! The fix is
to skip the longs completely since there were no global matches.
On to doubles, `-(insertionPoint + 1)` gives us `-(0 + 1) = -1`. The double adjust value is '3'
since 2 strings and 1 long, so `localDictionary.indexOf(-1 + 3)` = `localDictionary.indexOf(2)`
which is also a real value in our local dictionary that is definitely not '1'.
So in this one case, looking for '1' incorrectly ended up matching every row.
* Support Framing for Window Aggregations
This adds support for framing over ROWS
for window aggregations.
Still not implemented as yet:
1. RANGE frames
2. Multiple different frames in the same query
3. Frames on last/first functions
This commit adds a new class `InputStats` to track the total bytes processed by a task.
The field `processedBytes` is published in task reports along with other row stats.
Major changes:
- Add class `InputStats` to track processed bytes
- Add method `InputSourceReader.read(InputStats)` to read input rows while counting bytes.
> Since we need to count the bytes, we could not just have a wrapper around `InputSourceReader` or `InputEntityReader` (the way `CountableInputSourceReader` does) because the `InputSourceReader` only deals with `InputRow`s and the byte information is already lost.
- Classic batch: Use the new `InputSourceReader.read(inputStats)` in `AbstractBatchIndexTask`
- Streaming: Increment `processedBytes` in `StreamChunkParser`. This does not use the new `InputSourceReader.read(inputStats)` method.
- Extend `InputStats` with `RowIngestionMeters` so that bytes can be exposed in task reports
Other changes:
- Update tests to verify the value of `processedBytes`
- Rename `MutableRowIngestionMeters` to `SimpleRowIngestionMeters` and remove duplicate class
- Replace `CacheTestSegmentCacheManager` with `NoopSegmentCacheManager`
- Refactor `KafkaIndexTaskTest` and `KinesisIndexTaskTest`
Refactor DataSource to have a getAnalysis method()
This removes various parts of the code where while loops and instanceof
checks were being used to walk through the structure of DataSource objects
in order to build a DataSourceAnalysis. Instead we just ask the DataSource
for its analysis and allow the stack to rebuild whatever structure existed.
* Processors for Window Processing
This is an initial take on how to use Processors
for Window Processing. A Processor is an interface
that transforms RowsAndColumns objects.
RowsAndColumns objects are essentially combinations
of rows and columns.
The intention is that these Processors are the start
of a set of operators that more closely resemble what
DB engineers would be accustomed to seeing.
* Wire up windowed processors with a query type that
can run them end-to-end. This code can be used to
actually run a query, so yay!
* Wire up windowed processors with a query type that
can run them end-to-end. This code can be used to
actually run a query, so yay!
* Some SQL tests for window functions. Added wikipedia
data to the indexes available to the
SQL queries and tests validating the windowing
functionality as it exists now.
Co-authored-by: Gian Merlino <gianmerlino@gmail.com>
* Moving all unnest cursor code atop refactored code for unnest
* Updating unnest cursor
* Removing dedup and fixing up some null checks
* AllowList changes
* Fixing some NPEs
* Using bitset for allowlist
* Updating the initialization only when cursor is in non-done state
* Updating code to skip rows not in allow list
* Adding a flag for cases when first element is not in allowed list
* Updating for a null in allowList
* Splitting unnest cursor into 2 subclasses
* Intercepting some apis with columnName for new unnested column
* Adding test cases and renaming some stuff
* checkstyle fixes
* Moving to an interface for Unnest
* handling null rows in a dimension
* Updating cursors after comments part-1
* Addressing comments and adding some more tests
* Reverting a change to ScanQueryRunner and improving a comment
* removing an unused function
* Updating cursors after comments part 2
* One last fix for review comments
* Making some functions private, deleting some comments, adding a test for unnest of unnest with allowList
* Adding an exception for a case
* Closure for unnest data source
* Adding some javadocs
* One minor change in makeDimSelector of columnarCursor
* Updating an error message
* Update processing/src/main/java/org/apache/druid/segment/DimensionUnnestCursor.java
Co-authored-by: Abhishek Agarwal <1477457+abhishekagarwal87@users.noreply.github.com>
* Unnesting on virtual columns was missing an object array, adding that to support virtual columns unnesting
* Updating exceptions to use UOE
* Renamed files, added column capability test on adapter, return statement and made unnest datasource not cacheable for the time being
* Handling for null values in dim selector
* Fixing a NPE for null row
* Updating capabilities
* Updating capabilities
Co-authored-by: Abhishek Agarwal <1477457+abhishekagarwal87@users.noreply.github.com>
SQL test framework extensions
* Capture planner artifacts: logical plan, etc.
* Planner test builder validates the logical plan
* Validation for the SQL resut schema (we already have
validation for the Druid row signature)
* Better Guice integration: properties, reuse Guice modules
* Avoid need for hand-coded expr, macro tables
* Retire some of the test-specific query component creation
* Fix query log hook race condition
* fixes BlockLayoutColumnarLongs close method to nullify internal buffer.
* fixes other BlockLayoutColumnar supplier close methods to nullify internal buffers.
* fix spotbugs
* we can read where we want to
we can leave your bounds behind
'cause if the memory is not there
we really don't care
and we'll crash this process of mine
We added compression to the latest/first pair storage, but
the code change was forcing new things to be persisted
with the new format, meaning that any segment created with
the new code cannot be read by the old code. Instead, we
need to default to creating the old format and then remove that default in a future version.
* Add string comparison methods to StringUtils, fix dictionary comparisons.
There are various places in Druid code where we assume that String.compareTo
is consistent with Unicode code-point ordering. Sadly this is not the case.
To help deal with this, this patch introduces the following helpers:
1) compareUnicode: Compares two Strings in Unicode code-point order.
2) compareUtf8: Compares two UTF-8 byte arrays in Unicode code-point order.
Equivalent to comparison as unsigned bytes.
3) compareUtf8UsingJavaStringOrdering: Compares two UTF-8 byte arrays, or
ByteBuffers, in a manner consistent with String.compareTo.
There is no helper for comparing two Strings in a manner consistent
with String.compareTo, because for that we can use compareTo directly.
The patch also fixes an inconsistency between the String and UTF-8
dictionary GenericIndexed flavors of string-typed columns: they were
formerly using incompatible comparators.
* Adjust test.
* FrontCodedIndexed updates.
* Add test.
* Fix comments.
Changes:
- Add a metric for partition-wise kafka/kinesis lag for streaming ingestion.
- Emit lag metrics for streaming ingestion when supervisor is not suspended and state is in {RUNNING, IDLE, UNHEALTHY_TASKS, UNHEALTHY_SUPERVISOR}
- Document metrics
* Compaction: Fetch segments one at a time on main task; skip when possible.
Compact tasks include the ability to fetch existing segments and determine
reasonable defaults for granularitySpec, dimensionsSpec, and metricsSpec.
This is a useful feature that makes compact tasks work well even when the
user running the compaction does not have a clear idea of what they want
the compacted segments to be like.
However, this comes at a cost: it takes time, and disk space, to do all
of these fetches. This patch improves the situation in two ways:
1) When segments do need to be fetched, download them one at a time and
delete them when we're done. This still takes time, but minimizes the
required disk space.
2) Don't fetch segments on the main compact task when they aren't needed.
If the user provides a full granularitySpec, dimensionsSpec, and
metricsSpec, we can skip it.
* Adjustments.
* Changes from code review.
* Fix logic for determining rollup.
* Use lookup memory footprint in MSQ memory computations.
Two main changes:
1) Add estimateHeapFootprint to LookupExtractor.
2) Use this in MSQ's IndexerWorkerContext when determining the total
amount of available memory. It's taken off the top.
This prevents MSQ tasks from running out of memory when there are lookups
defined in the cluster.
* Updates from code review.
* First set of changes for framework
* Second set of changes to move segment map function to data source
* Minot change to server manager
* Removing the createSegmentMapFunction from JoinableFactoryWrapper and moving to JoinDataSource
* Checkstyle fixes
* Patching Eric's fix for injection
* Checkstyle and fixing some CI issues
* Fixing code inspections and some failed tests and one injector for test in avatica
* Another set of changes for CI...almost there
* Equals and hashcode part update
* Fixing injector from Eric + refactoring for broadcastJoinHelper
* Updating second injector. Might revert later if better way found
* Fixing guice issue in JoinableFactory
* Addressing review comments part 1
* Temp changes refactoring
* Revert "Temp changes refactoring"
This reverts commit 9da42a9ef0.
* temp
* Temp discussions
* Refactoring temp
* Refatoring the query rewrite to refer to a datasource
* Refactoring getCacheKey by moving it inside data source
* Nullable annotation check in injector
* Addressing some comments, removing 2 analysis.isJoin() checks and correcting the benchmark files
* Minor changes for refactoring
* Addressing reviews part 1
* Refactoring part 2 with new test cases for broadcast join
* Set for nullables
* removing instance of checks
* Storing nullables in guice to avoid checking on reruns
* Fixing a test case and removing an irrelevant line
* Addressing the atomic reference review comments
* add FrontCodedIndexed for delta string encoding
* now for actual segments
* fix indexOf
* fixes and thread safety
* add bucket size 4, which seems generally better
* fixes
* fixes maybe
* update indexes to latest interfaces
* utf8 support
* adjust
* oops
* oops
* refactor, better, faster
* more test
* fixes
* revert
* adjustments
* fix prefixing
* more chill
* sql nested benchmark too
* refactor
* more comments and javadocs
* better get
* remove base class
* fix
* hot rod
* adjust comments
* faster still
* minor adjustments
* spatial index support
* spotbugs
* add isSorted to Indexed to strengthen indexOf contract if set, improve javadocs, add docs
* fix docs
* push into constructor
* use base buffer instead of copy
* oops
* SQL: Use timestamp_floor when granularity is not safe.
PR #12944 added a check at the execution layer to avoid materializing
excessive amounts of time-granular buckets. This patch modifies the SQL
planner to avoid generating queries that would throw such errors, by
switching certain plans to use the timestamp_floor function instead of
granularities. This applies both to the Timeseries query type, and the
GroupBy timestampResultFieldGranularity feature.
The patch also goes one step further: we switch to timestamp_floor
not just in the ETERNITY + non-ALL case, but also if the estimated
number of time-granular buckets exceeds 100,000.
Finally, the patch modifies the timestampResultFieldGranularity
field to consistently be a String rather than a Granularity. This
ensures that it can be round-trip serialized and deserialized, which is
useful when trying to execute the results of "EXPLAIN PLAN FOR" with
GroupBy queries that use the timestampResultFieldGranularity feature.
* Fix test, address PR comments.
* Fix ControllerImpl.
* Fix test.
* Fix unused import.
We introduce two new configuration keys that refine the query context security model controlled by druid.auth.authorizeQueryContextParams. When that value is set to true then two other configuration options become available:
druid.auth.unsecuredContextKeys: The set of query context keys that do not require a security check. Use this for the "white-list" of key to allow. All other keys go through the existing context key security checks.
druid.auth.securedContextKeys: The set of query context keys that do require a security check. Use this when you want to allow all but a specific set of keys: only these keys go through the existing context key security checks.
Both are set using JSON list format:
druid.auth.securedContextKeys=["secretKey1", "secretKey2"]
You generally set one or the other values. If both are set, unsecuredContextKeys acts as exceptions to securedContextKeys.
In addition, Druid defines two query context keys which always bypass checks because Druid uses them internally:
sqlQueryId
sqlStringifyArrays
This is in preparation for eventually retiring the flag `useMaxMemoryEstimates`,
after which the footprint of a value in the dimension dictionary will always be
estimated using the `estimateSizeOfValue()` method.
* fix json_value sql planning with decimal type, fix vectorized expression math null value handling in default mode
changes:
* json_value 'returning' decimal will now plan to native double typed query instead of ending up with default string typing, allowing decimal vector math expressions to work with this type
* vector math expressions now zero out 'null' values even in 'default' mode (druid.generic.useDefaultValueForNull=false) to prevent downstream things that do not check the null vector from producing incorrect results
* more better
* test and why not vectorize
* more test, more fix
* Expose HTTP Response headers from SqlResource
This change makes the SqlResource expose HTTP response
headers in the same way that the QueryResource exposes them.
Fundamentally, the change is to pipe the QueryResponse
object all the way through to the Resource so that it can
populate response headers. There is also some code
cleanup around DI, as there was a superfluous FactoryFactory
class muddying things up.
changes:
* long and double value columns are now written directly, at the same time as writing out the 'intermediary' dictionaryid column with unsorted ids
* remove reverse value lookup from GlobalDictionaryIdLookup since it is no longer needed
* more consistent expression error messages
* review stuff
* add NamedFunction for Function, ApplyFunction, and ExprMacro to share common stuff
* fixes
* add expression transform name to transformer failure, better parse_json error messaging
-Add classes for writing cell values in LZ4 block compressed format.
Payloads are indexed by element number for efficient random lookup
-update SerializablePairLongStringComplexMetricSerde to use block
compression
-SerializablePairLongStringComplexMetricSerde also uses delta encoding
of the Long by doing 2-pass encoding: buffers first to find min/max
numbers and delta-encodes as integers if possible
Entry points for doing block-compressed storage of byte[] payloads
are the CellWriter and CellReader class. See
SerializablePairLongStringComplexMetricSerde for how these are used
along with how to do full column-based storage (delta encoding here)
which includes 2-pass encoding to compute a column header
* FrameFile: Java 17 compatibility.
DataSketches Memory.map is not Java 17 compatible, and from discussions
with the team, is challenging to make compatible with 17 while also
retaining compatibility with 8 and 11. So, in this patch, we switch away
from Memory.map and instead use the builtin JDK mmap functionality. Since
it only supports maps up to Integer.MAX_VALUE, we also implement windowing
in FrameFile, such that we can still handle large files.
Other changes:
1) Add two new "map" functions to FileUtils, which we use in this patch.
2) Add a footer checksum to the FrameFile format. Individual frames
already have checksums, but the footer was missing one.
* Changes for static analysis.
* wip
* Fixes.
* Fix accounting of bytesAdded in ReadableByteChunksFrameChannel.
Could cause WorkerInputChannelFactory to get into an infinite loop when
reading the footer of a frame file.
* Additional tests.
During ingestion, if a row containing multiple values for a numeric dimension is encountered,
the whole ingestion task fails. Ideally, this should just be registered as a parse exception.
Changes:
- Remove `instanceof List` check from `LongDimensionIndexer`, `FloatDimensionIndexer` and `DoubleDimensionIndexer`.
Any invalid type, including list, throws a parse exception in `DimensionHandlerUtils.convertObjectToXXX`
methods. `ParseException` is already handled in `OnHeapIncrementalIndex` and does not fail the entire task.
* json_value adjustments
changes:
* native json_value expression now has optional 3rd argument to specify type, which will cast all values to the specified type
* rework how JSON_VALUE is wired up in SQL. Now we are using a custom convertlet to translate JSON_VALUE(... RETURNING type) into dedicated JSON_VALUE_BIGINT, JSON_VALUE_DOUBLE, JSON_VALUE_VARCHAR, JSON_VALUE_ANY instead of using the calcite StandardConvertletTable that wraps JSON_VALUE_ANY in a CAST, so that we preserve the typing of JSON_VALUE to pass down to the native expression as the 3rd argument
* fix json_value_any to be usable by humans too, coverage
* fix bug
* checkstyle
* checkstyle
* review stuff
* validate that options to json_value are the supported options rather than ignore them
* remove more legacy undocumented functions
* KLL sketch
* added documentation
* direct static refs
* direct static refs
* fixed test
* addressed review points
* added KLL sketch related terms
* return a copy from get
* Copy unions when returning them from "get".
* Remove redundant "final".
Co-authored-by: AlexanderSaydakov <AlexanderSaydakov@users.noreply.github.com>
Co-authored-by: Gian Merlino <gianmerlino@gmail.com>
The method wasn't following its contract, leading to pollution of the
overall planner context, when really we just want to create a new
context for a specific query.
* Error handling improvements for frame channels.
Two changes:
1) Send errors down in-memory channels (BlockingQueueFrameChannel) on
failure. This ensures that in situations where a chain of processors
has been set up on a single machine, all processors see the root
cause error. In particular, this means the final processor in the
chain reports the root cause error, which ensures that someone with
a handle to the final processor will get the proper error.
2) Update FrameFileHttpResponseHandler to expect that the final fetch,
rather than being simply empty, is also empty with a special header.
This ensures that the handler is able to tell the difference between
an empty fetch due to being at EOF, and an empty fetch due to a
truncated HTTP response (after the 200 OK and headers are sent down,
but before any content appears).
* Fix tests, imports.
* Checkstyle!
* Refactor SqlLifecycle into statement classes
Create direct & prepared statements
Remove redundant exceptions from tests
Tidy up Calcite query tests
Make PlannerConfig more testable
* Build fixes
* Added builder to SqlQueryPlus
* Moved Calcites system properties to saffron.properties
* Build fix
* Resolve merge conflict
* Fix IntelliJ inspection issue
* Revisions from reviews
Backed out a revision to Calcite tests that didn't work out as planned
* Build fix
* Fixed spelling errors
* Fixed failed test
Prepare now enforces security; before it did not.
* Rebase and fix IntelliJ inspections issue
* Clean up exception handling
* Fix handling of JDBC auth errors
* Build fix
* More tweaks to security messages
* Introduce defaultOnDiskStorage config for groupBy
* add debug log to groupby query config
* Apply config change suggestion from review
* Remove accidental new lines
* update default value of new default disk storage config
* update debug log to have more descriptive text
* Make maxOnDiskStorage and defaultOnDiskStorage HumanRedadableBytes
* improve test coverage
* Provide default implementation to new default method on advice of reviewer
In the current druid code base, we have the interface DataSegmentPusher which allows us to push segments to the appropriate deep storage without the extension being worried about the semantics of how to push too deep storage.
While working on #12262, whose some part of the code will go as an extension, I realized that we do not have an interface that allows us to do basic "write, get, delete, deleteAll" operations on the appropriate deep storage without let's say pulling the s3-storage-extension dependency in the custom extension.
Hence, the idea of StorageConnector was born where the storage connector sits inside the druid core so all extensions have access to it.
Each deep storage implementation, for eg s3, GCS, will implement this interface.
Now with some Jackson magic, we bind the implementation of the correct deep storage implementation on runtime using a type variable.
* Adjust "in" filter null behavior to match "selector".
Now, both of them match numeric nulls if constructed with a "null" value.
This is consistent as far as native execution goes, but doesn't match
the behavior of SQL = and IN. So, to address that, this patch also
updates the docs to clarify that the native filters do match nulls.
This patch also updates the SQL docs to describe how Boolean logic is
handled in addition to how NULL values are handled.
Fixes#12856.
* Fix test.
* Frame processing and channels.
Follow-up to #12745. This patch adds three new concepts:
1) Frame channels are interfaces for doing nonblocking reads and writes
of frames.
2) Frame processors are interfaces for doing nonblocking processing of
frames received from input channels and sent to output channels.
3) Cluster-by keys, which can be used for sorting or partitioning.
The patch also adds SuperSorter, a user of these concepts, both to
illustrate how they are used, and also because it is going to be useful
in future work.
Central classes:
- ReadableFrameChannel. Implementations include
BlockingQueueFrameChannel (in-memory channel that implements both interfaces),
ReadableFileFrameChannel (file-based channel),
ReadableByteChunksFrameChannel (byte-stream-based channel), and others.
- WritableFrameChannel. Implementations include BlockingQueueFrameChannel
and WritableStreamFrameChannel (byte-stream-based channel).
- ClusterBy, a sorting or partitioning key.
- FrameProcessor, nonblocking processor of frames. Implementations include
FrameChannelBatcher, FrameChannelMerger, and FrameChannelMuxer.
- FrameProcessorExecutor, an executor service that runs FrameProcessors.
- SuperSorter, a class that uses frame channels and processors to
do parallel external merge sort of any amount of data (as long as there
is enough disk space).
* Additional tests, fixes.
* Changes from review.
* Better implementation for ReadableInputStreamFrameChannel.
* Rename getFrameFileReference -> newFrameFileReference.
* Add InterruptedException to runIncrementally; add more tests.
* Cancellation adjustments.
* Review adjustments.
* Refactor BlockingQueueFrameChannel, rename doneReading and doneWriting to close.
* Additional changes from review.
* Additional changes.
* Fix test.
* Adjustments.
* Adjustments.
* Refactor Guice initialization
Builders for various module collections
Revise the extensions loader
Injector builders for server startup
Move Hadoop init to indexer
Clean up server node role filtering
Calcite test injector builder
* Revisions from review comments
* Build fixes
* Revisions from review comments
* Improved Java 17 support and Java runtime docs.
1) Add a "Java runtime" doc page with information about supported
Java versions, garbage collection, and strong encapsulation..
2) Update asm and equalsverifier to versions that support Java 17.
3) Add additional "--add-opens" lines to surefire configuration, so
tests can pass successfully under Java 17.
4) Switch openjdk15 tests to openjdk17.
5) Update FrameFile to specifically mention Java runtime incompatibility
as the cause of not being able to use Memory.map.
6) Update SegmentLoadDropHandler to log an error for Errors too, not
just Exceptions. This is important because an IllegalAccessError is
encountered when the correct "--add-opens" line is not provided,
which would otherwise be silently ignored.
7) Update example configs to use druid.indexer.runner.javaOptsArray
instead of druid.indexer.runner.javaOpts. (The latter is deprecated.)
* Adjustments.
* Use run-java in more places.
* Add run-java.
* Update .gitignore.
* Exclude hadoop-client-api.
Brought in when building on Java 17.
* Swap one more usage of java.
* Fix the run-java script.
* Fix flag.
* Include link to Temurin.
* Spelling.
* Update examples/bin/run-java
Co-authored-by: Xavier Léauté <xl+github@xvrl.net>
Co-authored-by: Xavier Léauté <xl+github@xvrl.net>
add NumericRangeIndex interface and BoundFilter support
changes:
* NumericRangeIndex interface, like LexicographicalRangeIndex but for numbers
* BoundFilter now uses NumericRangeIndex if comparator is numeric and there is no extractionFn
* NestedFieldLiteralColumnIndexSupplier.java now supports supplying NumericRangeIndex for single typed numeric nested literal columns
* better faster stronger and (ever so slightly) more understandable
* more tests, fix bug
* fix style
* Automatic sizing for GroupBy dictionary sizes.
Merging and selector dictionary sizes currently both default to 100MB.
This is not optimal, because it can lead to OOM on small servers and
insufficient resource utilization on larger servers. It also invites
end users to try to tune it when queries run out of dictionary space,
which can make things worse if the end user sets it to too high.
So, this patch:
- Adds automatic tuning for selector and merge dictionaries. Selectors
use up to 15% of the heap and merge buffers use up to 30% of the heap
(aggregate across all queries).
- Updates out-of-memory error messages to emphasize enabling disk
spilling vs. increasing memory parameters. With the memory parameters
automatically sized, it is more likely that an end user will get
benefit from enabling disk spilling.
- Removes the query context parameters that allow lowering of configured
dictionary sizes. These complicate the calculation, and I don't see a
reasonable use case for them.
* Adjust tests.
* Review adjustments.
* Additional comment.
* Remove unused import.
When we return DISK_FULL to a processing thread, it skips the rest of
the segment and the query is canceled. However, it's possible that the
next segment starts processing before cancellation can kick in. We want
that one, if it occurs, to see DISK_FULL too.
* Preserve column order in DruidSchema, SegmentMetadataQuery.
Instead of putting columns in alphabetical order. This is helpful
because it makes query order better match ingestion order. It also
allows tools, like the reindexing flow in the web console, to more
easily do follow-on ingestions using a column order that matches the
pre-existing column order.
We prefer the order from the latest segments. The logic takes all
columns from the latest segments in the order they appear, then adds
on columns from older segments after those.
* Additional test adjustments.
* Adjust imports.
* Frame format for data transfer and short-term storage.
As we move towards query execution plans that involve more transfer
of data between servers, it's important to have a data format that
provides for doing this more efficiently than the options available to
us today.
This patch adds:
- Columnar frames, which support fast querying.
- Row-based frames, which support fast sorting via memory comparison
and fast whole-row copies via memory copying.
- Frame files, a container format that can be stored on disk or
transferred between servers.
The idea is we should use row-based frames when data is expected to
be sorted, and columnar frames when data is expected to be queried.
The code in this patch is not used in production yet. Therefore, the
patch involves minimal changes outside of the org.apache.druid.frame
package. The main ones are adjustments to SqlBenchmark to add benchmarks
for queries on frames, and the addition of a "forEach" method to Sequence.
* Fixes based on tests, static analysis.
* Additional fixes.
* Skip DS mapping tests on JDK 14+
* Better JDK checking in tests.
* Fix imports.
* Additional comment.
* Adjustments from code review.
* Update test case.
* jvm gc to mxbeans
* add zgc and shenandoah #12476
* remove tryCreateGcCounter
* separate the space collector
* blend GcGenerationCollector into GcCollector
* add jdk surefire argLine
* Poison StupidPool and fix resource leaks
There are various resource leaks from test setup as well as some
corners in query processing. We poison the StupidPool to start failing
tests when the leaks come and fix any issues uncovered from that so
that we can start from a clean baseline.
Unfortunately, because of how poisoning works,
we can only fail future checkouts from the same pool,
which means that there is a natural race between a
leak happening -> GC occurs -> leak detected -> pool poisoned.
This race means that, depending on interleaving of tests,
if the very last time that an object is checked out
from the pool leaks, then it won't get caught.
At some point in the future, something will catch it,
however and from that point on it will be deterministic.
* Remove various things left over from iterations
* Clean up FilterAnalysis and add javadoc on StupidPool
* Revert changes to .idea/misc.xml that accidentally got pushed
* Style and test branches
* Stylistic woes
True, false, and null have different meanings: true/false mean "legacy"
and "not legacy"; null means use the default set by ScanQueryConfig.
So, we need to respect this in the JsonIgnore setup.
* Fix self-referential shape inspection in BaseExpressionColumnValueSelector.
The new test would throw StackOverflowError on the old code.
* Restore prior test.
* Remove null and empty fields from native queries
* Test fixes
* Attempted IT fix.
* Revisions from review comments
* Build fixes resulting from changes suggested by reviews
* IT fix for changed segment size
* Clean up query contexts
Uses constants in place of literal strings for context keys.
Moves some QueryContext methods to QueryContexts for reuse.
* Revisions from review comments
Often users are submitting queries, and ingestion specs that work only if the relevant extension is not loaded. However, the error is too technical for the users and doesn't suggest them to check for missing extensions. This PR modifies the error message so users can at least check their settings before assuming that the error is because of a bug.
fixes an issue caused by a test modification in #12408 that was closing buffers allocated by the compression strategy instead of allowing the closer to do it
RowBasedColumnSelectorFactory inherited strange behavior from
Rows.objectToStrings for nulls that appear in lists: instead of being
left as a null, it is replaced with the string "null". Some callers may
need compatibility with this strange behavior, but it should be opt-in.
Query-time call sites are changed to opt-out of this behavior, since it
is not consistent with query-time expectations. The IncrementalIndex
ingestion-time call site retains the old behavior, as this is traditionally
when Rows.objectToStrings would be used.
* Add RowIdSupplier to ColumnSelectorFactory.
This enables virtual columns to cache their outputs in case they are
called multiple times on the same underlying row. This is common for
numeric selectors, where the common pattern is to call isNull() and
then follow with getLong(), getFloat(), or getDouble(). Here, output
caching reduces the number of expression evals by half.
* Fix tests.
* Adding zstandard compression library
* 1. Took @clintropolis's advice to have ZStandard decompressor use the byte array when the buffers are not direct.
2. Cleaned up checkstyle issues.
* Fixing zstandard version to latest stable version in pom's and updating license files
* Removing zstd from benchmarks and adding to processing (poms)
* fix the intellij inspection issue
* Removing the prefix v for the version in the license check for ztsd
* Fixing license checks
Co-authored-by: Rahul Gidwani <r_gidwani@apple.com>
Adds a default implementation of getQueryContext, which was added to the Query interface in #12396. Query is marked with @ExtensionPoint, and lately we have been trying to be less volatile on these interfaces by providing default implementations to be more chill for extension writers.
The way this default implementation is done in this PR is a bit strange due to the way that getQueryContext is used (mutated with system default and system generated keys); the default implementation has a specific object that it returns, and I added another temporary default method isLegacyContext that checks if the getQueryContext returns that object or not. If not, callers fall back to using getContext and withOverriddenContext to set these default and system values.
I am open to other ideas as well, but this way should work at least without exploding, and added some tests to ensure that it is wired up correctly for QueryLifecycle, including the context authorization stuff.
The added test shows the strange behavior if query context authorization is enabled, mainly that the system default and system generated query context keys also need to be granted as permissions for things to function correctly. This is not great, so I mentioned it in the javadocs as well. Not sure if it needs to be called out anywhere else.
Description
Fixes a bug when running q's like
SELECT cntarray,
Count(*)
FROM (SELECT dim1,
dim2,
Array_agg(cnt) AS cntarray
FROM (SELECT dim1,
dim2,
dim3,
Count(*) AS cnt
FROM foo
GROUP BY 1,
2,
3)
GROUP BY 1,
2)
GROUP BY 1
This generates an error:
org.apache.druid.java.util.common.ISE: Unable to convert type [Ljava.lang.Object; to org.apache.druid.segment.data.ComparableList
at org.apache.druid.segment.DimensionHandlerUtils.convertToList(DimensionHandlerUtils.java:405) ~[druid-xx]
Because it's an array of numbers it looks like it does the convertToList call, which looks like:
@Nullable
public static ComparableList convertToList(Object obj)
{
if (obj == null) {
return null;
}
if (obj instanceof List) {
return new ComparableList((List) obj);
}
if (obj instanceof ComparableList) {
return (ComparableList) obj;
}
throw new ISE("Unable to convert type %s to %s", obj.getClass().getName(), ComparableList.class.getName());
}
I.e. it doesn't know about arrays. Added the array handling as part of this PR.
* Emit state of replace and append for native batch tasks
* Emit count of one depending on batch ingestion mode (APPEND, OVERWRITE, REPLACE)
* Add metric to compaction job
* Avoid null ptr exc when null emitter
* Coverage
* Emit tombstone & segment counts
* Tasks need a type
* Spelling
* Integrate BatchIngestionMode in batch ingestion tasks functionality
* Typos
* Remove batch ingestion type from metric since it is already in a dimension. Move IngestionMode to AbstractTask to facilitate having mode as a dimension. Add metrics to streaming. Add missing coverage.
* Avoid inner class referenced by sub-class inspection. Refactor computation of IngestionMode to make it more robust to null IOConfig and fix test.
* Spelling
* Avoid polluting the Task interface
* Rename computeCompaction methods to avoid ambiguous java compiler error if they are passed null. Other minor cleanup.
* ConcurrentGrouper: Add option to always slice up merge buffers thread-locally.
Normally, the ConcurrentGrouper shares merge buffers across processing
threads until spilling starts, and then switches to a thread-local model.
This minimizes memory use and reduces likelihood of spilling, which is
good, but it creates thread contention. The new mergeThreadLocal option
causes a query to start in thread-local mode immediately, and allows us
to experiment with the relative performance of the two modes.
* Fix grammar in docs.
* Fix race in ConcurrentGrouper.
* Fix issue with timeouts.
* Remove unused import.
* Add "tradeoff" to dictionary.
* Direct UTF-8 access for "in" filters.
Directly related:
1) InDimFilter: Store stored Strings (in ValuesSet) plus sorted UTF-8
ByteBuffers (in valuesUtf8). Use valuesUtf8 whenever possible. If
necessary, the input set is copied into a ValuesSet. Much logic is
simplified, because we always know what type the values set will be.
I think that there won't even be an efficiency loss in most cases.
InDimFilter is most frequently created by deserialization, and this
patch updates the JsonCreator constructor to deserialize
directly into a ValuesSet.
2) Add Utf8ValueSetIndex, which InDimFilter uses to avoid UTF-8 decodes
during index lookups.
3) Add unsigned comparator to ByteBufferUtils and use it in
GenericIndexed.BYTE_BUFFER_STRATEGY. This is important because UTF-8
bytes can be compared as bytes if, and only if, the comparison
is unsigned.
4) Add specialization to GenericIndexed.singleThreaded().indexOf that
avoids needless ByteBuffer allocations.
5) Clarify that objects returned by ColumnIndexSupplier.as are not
thread-safe. DictionaryEncodedStringIndexSupplier now calls
singleThreaded() on all relevant GenericIndexed objects, saving
a ByteBuffer allocation per access.
Also:
1) Fix performance regression in LikeFilter: since #12315, it applied
the suffix matcher to all values in range even for type MATCH_ALL.
2) Add ObjectStrategy.canCompare() method. This fixes LikeFilterBenchmark,
which was broken due to calls to strategy.compare in
GenericIndexed.fromIterable.
* Add like-filter implementation tests.
* Add in-filter implementation tests.
* Add tests, fix issues.
* Fix style.
* Adjustments from review.
* Ensure ByteBuffers allocated in tests get freed.
Many tests had problems where a direct ByteBuffer would be allocated
and then not freed. This is bad because it causes flaky tests.
To fix this:
1) Add ByteBufferUtils.allocateDirect(size), which returns a ResourceHolder.
This makes it easy to free the direct buffer. Currently, it's only used
in tests, because production code seems OK.
2) Update all usages of ByteBuffer.allocateDirect (off-heap) in tests either
to ByteBuffer.allocate (on-heap, which are garbaged collected), or to
ByteBufferUtils.allocateDirect (wherever it seemed like there was a good
reason for the buffer to be off-heap). Make sure to close all direct
holders when done.
* Changes based on CI results.
* A different approach.
* Roll back BitmapOperationTest stuff.
* Try additional surefire memory.
* Revert "Roll back BitmapOperationTest stuff."
This reverts commit 49f846d9e3.
* Add TestBufferPool.
* Revert Xmx change in tests.
* Better behaved NestedQueryPushDownTest. Exit tests on OOME.
* Fix TestBufferPool.
* Remove T1C from ARM tests.
* Somewhat safer.
* Fix tests.
* Fix style stuff.
* Additional debugging.
* Reset null / expr configs better.
* ExpressionLambdaAggregatorFactory thread-safety.
* Alter forkNode to try to get better info when a JVM crashes.
* Fix buffer retention in ExpressionLambdaAggregatorFactory.
* Remove unused import.
In the majority of cases, this improves performance.
There's only one case I'm aware of where this may be a net negative: for time_floor(__time, <period>) where there are many repeated __time values. In nonvectorized processing, SingleLongInputCachingExpressionColumnValueSelector implements an optimization to avoid computing the time_floor function on every row. There is no such optimization in vectorized processing.
IMO, we shouldn't mention this in the docs. Rationale: It's too fiddly of a thing: it's not guaranteed that nonvectorized processing will be faster due to the optimization, because it would have to overcome the inherent speed advantage of vectorization. So it'd always require testing to determine the best setting for a specific dataset. It would be bad if users disabled vectorization thinking it would speed up their queries, and it actually slowed them down. And even if users do their own testing, at some point in the future we'll implement the optimization for vectorized processing too, and it's likely that users that explicitly disabled vectorization will continue to have it disabled. I'd like to avoid this outcome by encouraging all users to enable vectorization at all times. Really advanced users would be following development activity anyway, and can read this issue
setting thread names takes a measurable amount of time in the case where segment scans are very quick. In high-QPS testing we found a slight performance boost from turning off processing thread renaming. This option makes that possible.
* Add ipaddress library as dependency.
* IPv4 functions to use the inet.ipaddr package.
* Remove unused imports.
* Add new function.
* Minor rename.
* Add more unit tests.
* IPv4 address expr utils unit tests and address options.
* Adjust the IPv4Util functions.
* Move the UTs a bit around.
* Javadoc comments.
* Add license info for IPAddress.
* Fix groupId, artifact and version in license.yaml.
* Remove redundant subnet in messages - fixes UT.
* Remove unused commons-net dependency for /processing project.
* Make class and methods public so it can be accessed.
* Add initial version of benchmark
* Add subnetutils package for benchmarks.
* Auto generate ip addresses.
* Add more v4 address representations in setup to avoid bias.
* Use ThreadLocalRandom to avoid forbidden API usage.
* Adjust IPv4AddressBenchmark to adhere to codestyle rules.
* Update ipaddress library to latest 5.3.4
* Add ipaddress package dependency to benchmarks project.
Following up on #12315, which pushed most of the logic of building ImmutableBitmap into BitmapIndex in order to hide the details of how column indexes are implemented from the Filter implementations, this PR totally refashions how Filter consume indexes. The end result, while a rather dramatic reshuffling of the existing code, should be extraordinarily flexible, eventually allowing us to model any type of index we can imagine, and providing the machinery to build the filters that use them, while also allowing for other column implementations to implement the built-in index types to provide adapters to make use indexing in the current set filters that Druid provides.
* Add feature flag for sql planning of TimeBoundary queries
* fixup! Add feature flag for sql planning of TimeBoundary queries
* Add documentation for enableTimeBoundaryPlanning
* fixup! Add documentation for enableTimeBoundaryPlanning
* Vectorized version of string last aggregator
* Updating string last and adding testcases
* Updating code and adding testcases for serializable pairs
* Addressing review comments
* GroupBy: Reduce allocations by reusing entry and key holders.
Two main changes:
1) Reuse Entry objects returned by various implementations of
Grouper.iterator.
2) Reuse key objects contained within those Entry objects.
This is allowed by the contract, which states that entries must be
processed and immediately discarded. However, not all call sites
respected this, so this patch also updates those call sites.
One particularly sneaky way that the old code retained entries too long
is due to Guava's MergingIterator and CombiningIterator. Internally,
these both advance to the next value prior to returning the current
value. So, this patch addresses that in two ways:
1) For merging, we have our own implementation MergeIterator already,
although it had the same problem. So, this patch updates our
implementation to return the current item prior to advancing to the
next item. It also adds a forbidden-api entry to ensure that this
safer implementation is used instead of Guava's.
2) For combining, we address the problem in a different way: by copying
the key when creating the new, combined entry.
* Attempt to fix test.
* Remove unused import.
* Reduce allocations due to Jackson serialization.
This patch attacks two sources of allocations during Jackson
serialization:
1) ObjectMapper.writeValue and JsonGenerator.writeObject create a new
DefaultSerializerProvider instance for each call. It has lots of
fields and creates pressure on the garbage collector. So, this patch
adds helper functions in JacksonUtils that enable reuse of
SerializerProvider objects and updates various call sites to make
use of this.
2) GroupByQueryToolChest copies the ObjectMapper for every query to
install a special module that supports backwards compatibility with
map-based rows. This isn't needed if resultAsArray is set and
all servers are running Druid 0.16.0 or later. This release was a
while ago. So, this patch disables backwards compatibility by default,
which eliminates the need to copy the heavyweight ObjectMapper. The
patch also introduces a configuration option that allows admins to
explicitly enable backwards compatibility.
* Add test.
* Update additional call sites and add to forbidden APIs.
* JvmMonitor: Handle more generation and collector scenarios.
ZGC on Java 11 only has a generation 1 (there is no 0). This causes
a NullPointerException when trying to extract the spacesCount for
generation 0. In addition, ZGC on Java 15 has a collector number 2
but no spaces in generation 2, which breaks the assumption that
collectors always have same-numbered spaces.
This patch adjusts things to be more robust, enabling the JvmMonitor
to work properly for ZGC on both Java 11 and 15.
* Test adjustments.
* Improve surefire arglines.
* Need a placeholder
* Vectorizing Latest aggregator Part 1
* Updating benchmark tests
* Changing appropriate logic for vectors for null handling
* Introducing an abstract class and moving the commonalities there
* Adding vectorization for StringLast aggregator (initial version)
* Updated bufferized version of numeric aggregators
* Adding some javadocs
* Making sure this PR vectorizes numeric latest agg only
* Adding another benchmarking test
* Fixing intellij inspections
* Adding tests for double
* Adding test cases for long and float
* Updating testcases
* Checkstyle oops..
* One tiny change in test case
* Fixing spotbug and rhs not being used
This PR enables ARM builds on Travis. I've ported over the changes from @martin-g on reducing heap requirements for some of the tests to ensure they run well on Travis arm instances.