Starting the process to officially deprecate non SQL compatible modes by updating docs to aggressively call out that Druids non SQL compliant modes are deprecated and will go away someday. There are no code or behavior changes at this PR.
Merging the work so far. @ektravel , @vogievetsky if there are additional improvements, let's track them & make another pr.
* Refactor streaming ingestion docs
* Update property definition
* Update after review
* Update known issues
* Move kinesis and kafka topics to ingestion, add redirects
* Saving changes
* Saving
* Add input format text
* Update after review
* Minor text edit
* Update example syntax
* Revert back to colon
* Fix merge conflicts
* Fix broken links
* Fix spelling error
This PR contains a portion of the changes from the inactive draft PR for integrating the catalog with the Calcite planner https://github.com/apache/druid/pull/13686 from @paul-rogers, extending the PARTITION BY clause to accept string literals for the time partitioning
* allow for kafka-emitter to have extra dimensions be set for each event it emits
* fix checktsyle issue in kafkaemitterconfig
* make changes to fix docs, and cleanup copy paste error in #toString()
* undo formatting to markdown table
* add more branches so test passes
* fix checkstyle issue
* Update the group id to org.apache.druid.extensions.contrib for contrib exts.
* Note iceberg and delta lake extensions in extensions.md
* properties and shell backticks
* Update groupId in distribution/pom.xml
* remove delta-lake from dist.
* Add note on downloading extension.
During ingestion, incremental segments are created in memory for the different time chunks and persisted to disk when certain thresholds are reached (max number of rows, max memory, incremental persist period etc). In the case where there are a lot of dimension and metrics (1000+) it was observed that the creation/serialization of incremental segment file format for persistence and persisting the file took a while and it was blocking ingestion of new data. This affected the real-time ingestion. This serialization and persistence can be parallelized across the different time chunks. This update aims to do that.
The patch adds a simple configuration parameter to the ingestion tuning configuration to specify number of persistence threads. The default value is 1 if it not specified which makes it the same as it is today.
If lots of keys map to the same value, reversing a LOOKUP call can slow
things down unacceptably. To protect against this, this patch introduces
a parameter sqlReverseLookupThreshold representing the maximum size of an
IN filter that will be created as part of lookup reversal.
If inSubQueryThreshold is set to a smaller value than
sqlReverseLookupThreshold, then inSubQueryThreshold will be used instead.
This allows users to use that single parameter to control IN sizes if they
wish.
* something
* test commit
* compilation fix
* more compilation fixes (fixme placeholders)
* Comment out druid-kereberos build since it conflicts with newly added transitive deps from delta-lake
Will need to sort out the dependencies later.
* checkpoint
* remove snapshot schema since we can get schema from the row
* iterator bug fix
* json json json
* sampler flow
* empty impls for read(InputStats) and sample()
* conversion?
* conversion, without timestamp
* Web console changes to show Delta Lake
* Asset bug fix and tile load
* Add missing pieces to input source info, etc.
* fix stuff
* Use a different delta lake asset
* Delta lake extension dependencies
* Cleanup
* Add InputSource, module init and helper code to process delta files.
* Test init
* Checkpoint changes
* Test resources and updates
* some fixes
* move to the correct package
* More tests
* Test cleanup
* TODOs
* Test updates
* requirements and javadocs
* Adjust dependencies
* Update readme
* Bump up version
* fixup typo in deps
* forbidden api and checkstyle checks
* Trim down dependencies
* new lines
* Fixup Intellij inspections.
* Add equals() and hashCode()
* chain splits, intellij inspections
* review comments and todo placeholder
* fix up some docs
* null table path and test dependencies. Fixup broken link.
* run prettify
* Different test; fixes
* Upgrade pyspark and delta-spark to latest (3.5.0 and 3.0.0) and regenerate tests
* yank the old test resource.
* add a couple of sad path tests
* Updates to readme based on latest.
* Version support
* Extract Delta DateTime converstions to DeltaTimeUtils class and add test
* More comprehensive split tests.
* Some test renames.
* Cleanup and update instructions.
* add pruneSchema() optimization for table scans.
* Oops, missed the parquet files.
* Update default table and rename schema constants.
* Test setup and misc changes.
* Add class loader logic as the context class loader is unaware about extension classes
* change some table client creation logic.
* Add hadoop-aws, hadoop-common and related exclusions.
* Remove org.apache.hadoop:hadoop-common
* Apply suggestions from code review
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
* Add entry to .spelling to fix docs static check
---------
Co-authored-by: abhishekagarwal87 <1477457+abhishekagarwal87@users.noreply.github.com>
Co-authored-by: Laksh Singla <lakshsingla@gmail.com>
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
* New: Add DDSketch-Druid extension
- Based off of http://www.vldb.org/pvldb/vol12/p2195-masson.pdf and uses
the corresponding https://github.com/DataDog/sketches-java library
- contains tests for post building and using aggregation/post
aggregation.
- New aggregator: `ddSketch`
- New post aggregators: `quantileFromDDSketch` and
`quantilesFromDDSketch`
* Fixing easy CodeQL warnings/errors
* Fixing docs, and dependencies
Also moved aggregator ids to AggregatorUtil and PostAggregatorIds
* Adding more Docs and better null/empty handling for aggregators
* Fixing docs, and pom version
* DDSketch documentation format and wording
A low value of inSubQueryThreshold can cause queries with IN filter to plan as joins more commonly. However, some of these join queries may not get planned as IN filter on data nodes and causes significant perf regression.
### Description
Our Kinesis consumer works by using the [GetRecords API](https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html) in some number of `fetchThreads`, each fetching some number of records (`recordsPerFetch`) and each inserting into a shared buffer that can hold a `recordBufferSize` number of records. The logic is described in our documentation at: https://druid.apache.org/docs/27.0.0/development/extensions-core/kinesis-ingestion/#determine-fetch-settings
There is a problem with the logic that this pr fixes: the memory limits rely on a hard-coded “estimated record size” that is `10 KB` if `deaggregate: false` and `1 MB` if `deaggregate: true`. There have been cases where a supervisor had `deaggregate: true` set even though it wasn’t needed, leading to under-utilization of memory and poor ingestion performance.
Users don’t always know if their records are aggregated or not. Also, even if they could figure it out, it’s better to not have to. So we’d like to eliminate the `deaggregate` parameter, which means we need to do memory management more adaptively based on the actual record sizes.
We take advantage of the fact that GetRecords doesn’t return more than 10MB (https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html ):
This pr:
eliminates `recordsPerFetch`, always use the max limit of 10000 records (the default limit if not set)
eliminate `deaggregate`, always have it true
cap `fetchThreads` to ensure that if each fetch returns the max (`10MB`) then we don't exceed our budget (`100MB` or `5% of heap`). In practice this means `fetchThreads` will never be more than `10`. Tasks usually don't have that many processors available to them anyway, so in practice I don't think this will change the number of threads for too many deployments
add `recordBufferSizeBytes` as a bytes-based limit rather than records-based limit for the shared queue. We do know the byte size of kinesis records by at this point. Default should be `100MB` or `10% of heap`, whichever is smaller.
add `maxBytesPerPoll` as a bytes-based limit for how much data we poll from shared buffer at a time. Default is `1000000` bytes.
deprecate `recordBufferSize`, use `recordBufferSizeBytes` instead. Warning is logged if `recordBufferSize` is specified
deprecate `maxRecordsPerPoll`, use `maxBytesPerPoll` instead. Warning is logged if maxRecordsPerPoll` is specified
Fixed issue that when the record buffer is full, the fetchRecords logic throws away the rest of the GetRecords result after `recordBufferOfferTimeout` and starts a new shard iterator. This seems excessively churny. Instead, wait an unbounded amount of time for queue to stop being full. If the queue remains full, we’ll end up right back waiting for it after the restarted fetch.
There was also a call to `newQ::offer` without check in `filterBufferAndResetBackgroundFetch`, which seemed like it could cause data loss. Now checking return value here, and failing if false.
### Release Note
Kinesis ingestion memory tuning config has been greatly simplified, and a more adaptive approach is now taken for the configuration. Here is a summary of the changes made:
eliminates `recordsPerFetch`, always use the max limit of 10000 records (the default limit if not set)
eliminate `deaggregate`, always have it true
cap `fetchThreads` to ensure that if each fetch returns the max (`10MB`) then we don't exceed our budget (`100MB` or `5% of heap`). In practice this means `fetchThreads` will never be more than `10`. Tasks usually don't have that many processors available to them anyway, so in practice I don't think this will change the number of threads for too many deployments
add `recordBufferSizeBytes` as a bytes-based limit rather than records-based limit for the shared queue. We do know the byte size of kinesis records by at this point. Default should be `100MB` or `10% of heap`, whichever is smaller.
add `maxBytesPerPoll` as a bytes-based limit for how much data we poll from shared buffer at a time. Default is `1000000` bytes.
deprecate `recordBufferSize`, use `recordBufferSizeBytes` instead. Warning is logged if `recordBufferSize` is specified
deprecate `maxRecordsPerPoll`, use `maxBytesPerPoll` instead. Warning is logged if maxRecordsPerPoll` is specified
* Kill tasks should honor the buffer period of unused segments.
- The coordinator duty KillUnusedSegments determines an umbrella interval
for each datasource to determine the kill interval. There can be multiple unused
segments in an umbrella interval with different used_status_last_updated timestamps.
For example, consider an unused segment that is 30 days old and one that is 1 hour old. Currently
the kill task after the 30-day mark would kill both the unused segments and not retain the 1-hour
old one.
- However, when a kill task is instantiated with this umbrella interval, it’d kill
all the unused segments regardless of the last updated timestamp. We need kill
tasks and RetrieveUnusedSegmentsAction to honor the bufferPeriod to avoid killing
unused segments in the kill interval prematurely.
* Clarify default behavior in docs.
* test comments
* fix canDutyRun()
* small updates.
* checkstyle
* forbidden api fix
* doc fix, unused import, codeql scan error, and cleanup logs.
* Address review comments
* Rename maxUsedFlagLastUpdatedTime to maxUsedStatusLastUpdatedTime
This is consistent with the column name `used_status_last_updated`.
* Apply suggestions from code review
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* Make period Duration type
* Remove older variants of runKilLTask() in OverlordClient interface
* Test can now run without waiting for canDutyRun().
* Remove previous variants of retrieveUnusedSegments from internal metadata storage coordinator interface.
Removes the following interface methods in favor of a new method added:
- retrieveUnusedSegmentsForInterval(String, Interval)
- retrieveUnusedSegmentsForInterval(String, Interval, Integer)
* Chain stream operations
* cleanup
* Pass in the lastUpdatedTime to markUnused test function and remove sleep.
---------
Co-authored-by: Kashif Faraz <kashif.faraz@gmail.com>
* Undocument unused segments retrieval API.
* Mark API deprecated and unstable. Note that it'll be removed.
* Cleanup .spelling entries
* Remove the Unstable annotation
* Add SpectatorHistogram extension
* Clarify documentation
Cleanup comments
* Use ColumnValueSelector directly
so that we support being queried as a Number using longSum or doubleSum aggregators as well as a histogram.
When queried as a Number, we're returning the count of entries in the histogram.
* Apply suggestions from code review
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
* Fix references
* Fix spelling
* Update docs/development/extensions-contrib/spectator-histogram.md
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
---------
Co-authored-by: Victoria Lim <vtlim@users.noreply.github.com>
* Reverse, pull up lookups in the SQL planner.
Adds two new rules:
1) ReverseLookupRule, which eliminates calls to LOOKUP by doing
reverse lookups.
2) AggregatePullUpLookupRule, which pulls up calls to LOOKUP above
GROUP BY, when the lookup is injective.
Adds configs `sqlReverseLookup` and `sqlPullUpLookup` to control whether
these rules fire. Both are enabled by default.
To minimize the chance of performance problems due to many keys mapping to
the same value, ReverseLookupRule refrains from reversing a lookup if there
are more keys than `inSubQueryThreshold`. The rationale for using this setting
is that reversal works by generating an IN, and the `inSubQueryThreshold`
describes the largest IN the user wants the planner to create.
* Add additional line.
* Style.
* Remove commented-out lines.
* Fix tests.
* Add test.
* Fix doc link.
* Fix docs.
* Add one more test.
* Fix tests.
* Logic, test updates.
* - Make FilterDecomposeConcatRule more flexible.
- Make CalciteRulesManager apply reduction rules til fixpoint.
* Additional tests, simplify code.
Added support for Azure Government storage in Druid Azure-Extensions. This enhancement allows the Azure-Extensions to be compatible with different Azure storage types by updating the endpoint suffix from a hardcoded value to a configurable one.
This PR enables the flag by default to queue excess query requests in the jetty queue. Still keeping the flag so that it can be turned off if necessary. But the flag will be removed in the future.
* New handling for COALESCE, SEARCH, and filter optimization.
COALESCE is converted by Calcite's parser to CASE, which is largely
counterproductive for us, because it ends up duplicating expressions.
In the current code we end up un-doing it in our CaseOperatorConversion.
This patch has a different approach:
1) Add CaseToCoalesceRule to convert CASE back to COALESCE earlier, before
the Volcano planner runs, using CaseToCoalesceRule.
2) Add FilterDecomposeCoalesceRule to decompose calls like
"f(COALESCE(x, y))" into "(x IS NOT NULL AND f(x)) OR (x IS NULL AND f(y))".
This helps use indexes when available on x and y.
3) Add CoalesceLookupRule to push COALESCE into the third arg of LOOKUP.
4) Add a native "coalesce" function so we can convert 3+ arg COALESCE.
The advantage of this approach is that by un-doing the CASE to COALESCE
conversion earlier, we have flexibility to do more stuff with
COALESCE (like decomposition and pushing into LOOKUP).
SEARCH is an operator used internally by Calcite to represent matching
an argument against some set of ranges. This patch improves our handling
of SEARCH in two ways:
1) Expand NOT points (point "holes" in the range set) from SEARCH as
`!(a || b)` rather than `!a && !b`, which makes it possible to convert
them to a "not" of "in" filter later.
2) Generate those nice conversions for NOT points even if the SEARCH
is not composed of 100% NOT points. Without this change, a SEARCH
for "x NOT IN ('a', 'b') AND x < 'm'" would get converted like
"x < 'a' OR (x > 'a' AND x < 'b') OR (x > 'b' AND x < 'm')".
One of the steps we take when generating Druid queries from Calcite
plans is to optimize native filters. This patch improves this step:
1) Extract common ANDed predicates in ConvertSelectorsToIns, so we can
convert "(a && x = 'b') || (a && x = 'c')" into "a && x IN ('b', 'c')".
2) Speed up CombineAndSimplifyBounds and ConvertSelectorsToIns on
ORs with lots of children by adjusting the logic to avoid calling
"indexOf" and "remove" on an ArrayList.
3) Refactor ConvertSelectorsToIns to reduce duplicated code between the
handling for "selector" and "equals" filters.
* Not so final.
* Fixes.
* Fix test.
* Fix test.
* Minor fixes
* Update docs/development/extensions-contrib/prometheus.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
---------
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
* Allow empty inserts and replace.
- Introduce a new query context failOnEmptyInsert which defaults to false.
- When this context is false (default), MSQE will now allow empty inserts and replaces.
- When this context is true, MSQE will throw the existing InsertCannotBeEmpty MSQ fault.
- For REPLACE ALL over an ALL grain segment, the query will generate a tombstone spanning eternity
which will be removed eventually be the coordinator.
- Add unit tests in MSQInsertTest, MSQReplaceTest to test the new default behavior (i.e., when failOnEmptyInsert = false)
- Update unit tests in MSQFaultsTest to test the non-default behavior (i.e., when failOnEmptyInsert = true)
* Ignore test to see if it's the culprit for OOM
* Add heap dump config
* Bump up -Xmx from 1500 MB to 2048 MB
* Add steps to tarball and collect hprof dump to GHA action
* put back mx to 1500MB to trigger the failure
* add the step to reusable unit test workflow as well
* Revert the temp heap dump & @Ignore changes since max heap size is increased
* Minor updates
* Review comments
1. Doc suggestions
2. Add tests for empty insert and replace queries with ALL grain and limit in the
default failOnEmptyInsert mode (=false). Add similar tests to MSQFaultsTest with
failOnEmptyInsert = true, so the query does fail with an InsertCannotBeEmpty fault.
3. Nullable annotation and javadocs
* Add comment
replace_limit.patch
The PR addresses 2 things:
Add MSQ durable storage connector for GCS
Change GCS client library from the old Google API Client Library to the recommended Google Cloud Client Library. Ref: https://cloud.google.com/apis/docs/client-libraries-explained
* Optional removal of metrics from Prometheus PushGateway on shutdown
* Make pushGatewayDeleteOnShutdown property nullable
* Add waitForShutdownDelay property
* Fix unit test
* Address PR comments
* Address PR comments
* Add explanation on why it is useful to have deletePushGatewayMetricsOnShutdown
* Fix spelling error
* Fix spelling error
### Description
This pr adds an api for retrieving unused segments for a particular datasource. The api supports pagination by the addition of `limit` and `lastSegmentId` parameters. The resulting unused segments are returned with optional `sortOrder`, `ASC` or `DESC` with respect to the matching segments `id`, `start time`, and `end time`, or not returned in any guarenteed order if `sortOrder` is not specified
`GET /druid/coordinator/v1/datasources/{dataSourceName}/unusedSegments?interval={interval}&limit={limit}&lastSegmentId={lastSegmentId}&sortOrder={sortOrder}`
Returns a list of unused segments for a datasource in the cluster contained within an optionally specified interval.
Optional parameters for limit and lastSegmentId can be given as well, to limit results and enable paginated results.
The results may be sorted in either ASC, or DESC order depending on specifying the sortOrder parameter.
`dataSourceName`: The name of the datasource
`interval`: the specific interval to search for unused segments for.
`limit`: the maximum number of unused segments to return information about. This property helps to
support pagination
`lastSegmentId`: the last segment id from which to search for results. All segments returned are > this segment
lexigraphically if sortOrder is null or ASC, or < this segment lexigraphically if sortOrder is DESC.
`sortOrder`: Specifies the order with which to return the matching segments by start time, end time. A null
value indicates that order does not matter.
This PR has:
- [x] been self-reviewed.
- [ ] using the [concurrency checklist](https://github.com/apache/druid/blob/master/dev/code-review/concurrency.md) (Remove this item if the PR doesn't have any relation to concurrency.)
- [x] added documentation for new or modified features or behaviors.
- [ ] a release note entry in the PR description.
- [x] added Javadocs for most classes and all non-trivial methods. Linked related entities via Javadoc links.
- [ ] added or updated version, license, or notice information in [licenses.yaml](https://github.com/apache/druid/blob/master/dev/license.md)
- [x] added comments explaining the "why" and the intent of the code wherever would not be obvious for an unfamiliar reader.
- [x] added unit tests or modified existing tests to cover new code paths, ensuring the threshold for [code coverage](https://github.com/apache/druid/blob/master/dev/code-review/code-coverage.md) is met.
- [ ] added integration tests.
- [x] been tested in a test Druid cluster.