Instead of passing the constants around in a new parameter; InputAccessor was introduced to take care of transparently handling the constants - this new class started picking up some copy-paste debris around field accesses; and made them a little bit more readble.
Currently, Druid is using Guava 16.0.1 version. This upgrade to 31.1-jre fixes the following issues.
CVE-2018-10237 (Unbounded memory allocation in Google Guava 11.0 through 24.x before 24.1.1 allows remote attackers to conduct denial of service attacks against servers that depend on this library and deserialize attacker-provided data because the AtomicDoubleArray class (when serialized with Java serialization) and the CompoundOrdering class (when serialized with GWT serialization) perform eager allocation without appropriate checks on what a client has sent and whether the data size is reasonable). We don't use Java or GWT serializations. Despite being false positive they're causing red security scans on Druid distribution.
Latest version of google-client-api is incompatible with the existing Guava version. This PR unblocks Update google client apis to latest version #14414
The current version of jackson-databind is flagged for vulnerabilities CVE-2020-28491 (Although cbor format is not used in druid), CVE-2020-36518 (Seems genuine as deeply nested json in can cause resource exhaustion). Updating the dependency to the latest version 2.12.7 to fix these vulnerabilities.
* Fix EarliestLatestBySqlAggregator signature; Include function name for all signatures.
* Single quote function signatures, space between args and remove \n.
* fixup UT assertion
* merge druid-core, extendedset, and druid-hll into druid-processing to simplify everything
* fix poms and license stuff
* mockito is evil
* allow reset of JvmUtils RuntimeInfo if tests used static injection to override
changes:
* modified druid schema column type compution to special case COMPLEX<json> handling to choose COMPLEX<json> if any column in any segment is COMPLEX<json>
* NestedFieldVirtualColumn can now work correctly on any type of column, returning either a column selector if a root path, or nil selector if not
* fixed a random bug with NilVectorSelector when using a vector size larger than the default and druid.generic.useDefaultValueForNull=false would have the nulls vector set to all false instead of true
* fixed an overly aggressive check in ExprEval.ofType when handling complex types which would try to treat any string as base64 without gracefully falling back if it was not in fact base64 encoded, along with special handling for complex<json>
* added ExpressionVectorSelectors.castValueSelectorToObject and ExpressionVectorSelectors.castObjectSelectorToNumeric as convience methods to cast vector selectors using cast expressions without the trouble of constructing an expression. the polymorphic nature of the non-vectorized engine (and significantly larger overhead of non-vectorized expression processing) made adding similar methods for non-vectorized selectors less attractive and so have not been added at this time
* fix inconsistency between nested column indexer and serializer in handling values (coerce non primitive and non arrays of primitives using asString)
* ExprEval best effort mode now handles byte[] as string
* added test for ExprEval.bestEffortOf, and add missing conversion cases that tests uncovered
* more tests more better
SQL test framework extensions
* Capture planner artifacts: logical plan, etc.
* Planner test builder validates the logical plan
* Validation for the SQL resut schema (we already have
validation for the Druid row signature)
* Better Guice integration: properties, reuse Guice modules
* Avoid need for hand-coded expr, macro tables
* Retire some of the test-specific query component creation
* Fix query log hook race condition
We added compression to the latest/first pair storage, but
the code change was forcing new things to be persisted
with the new format, meaning that any segment created with
the new code cannot be read by the old code. Instead, we
need to default to creating the old format and then remove that default in a future version.
* Refactor Calcite test "framework" for planner tests
Refactors the current Calcite tests to make it a bit easier
to adjust the set of runtime objects used within a test.
* Move data creation out of CalciteTests into TestDataBuilder
* Move "framework" creation out of CalciteTests into
a QueryFramework
* Move injector-dependent functions from CalciteTests
into QueryFrameworkUtils
* Wrapper around the planner factory, etc. to allow
customization.
* Bulk of the "framework" created once per class rather
than once per test.
* Refactor tests to use a test builder
* Change all testQuery() methods to use the test builder.
Move test execution & verification into a test runner.
This adds min/max functions for CompressedBigDecimal. It exposes these
functions via sql (BIG_MAX, BIG_MIN--see the SqlAggFunction
implementations).
It also includes various bug fixes and cleanup to the original
CompressedBigDecimal code include the AggregatorFactories. Various null
handling was improved.
Additional test cases were added for both new and existing code
including a base test case for AggregationFactories. Other tests common
across sum,min,max may be refactored also to share the varoius cases in
the future.
This adds a sql function, "BIG_SUM", that uses
CompressedBigDecimal to do a sum. Other misc changes:
1. handle NumberFormatExceptions when parsing a string (default to set
to 0, configurable in agg factory to be strict and throw on error)
2. format pom file (whitespace) + add dependency
3. scaleUp -> scale and always require scale as a parameter
Optimizes the compareTo() function in
CompressedBigDecimal. It directly compares the int[] rather than
creating BigDecimal objects and using its compareTo.
It handles unequal sized CBDs, but does require
the scales to match.
1. remove unnecessary generic type from CompressedBigDecimal
2. support Number input types
3. support aggregator reading supported input types directly (uningested
data)
4. fix scaling bug in buffer aggregator
Compressed Big Decimal is an extension which provides support for
Mutable big decimal value that can be used to accumulate values
without losing precision or reallocating memory. This type helps in
absolute precision arithmetic on large numbers in applications,
where greater level of accuracy is required, such as financial
applications, currency based transactions. This helps avoid rounding
issues where in potentially large amount of money can be lost.
Accumulation requires that the two numbers have the same scale,
but does not require that they are of the same size. If the value
being accumulated has a larger underlying array than this value
(the result), then the higher order bits are dropped, similar to what
happens when adding a long to an int and storing the result in an
int. A compressed big decimal that holds its data with an embedded
array.
Compressed big decimal is an absolute number based complex type
based on big decimal in Java. This supports all the functionalities
supported by Java Big Decimal. Java Big Decimal is not mutable in
order to avoid big garbage collection issues. Compressed big decimal
is needed to mutate the value in the accumulator.