add NumericRangeIndex interface and BoundFilter support
changes:
* NumericRangeIndex interface, like LexicographicalRangeIndex but for numbers
* BoundFilter now uses NumericRangeIndex if comparator is numeric and there is no extractionFn
* NestedFieldLiteralColumnIndexSupplier.java now supports supplying NumericRangeIndex for single typed numeric nested literal columns
* better faster stronger and (ever so slightly) more understandable
* more tests, fix bug
* fix style
* Druid planner now makes only one pass through Calcite planner
Resolves the issue that required two parse/plan cycles: one
for validate, another for plan. Creates a clone of the Calcite
planner and validator to resolve the conflict that prevented
the merger.
* Fixes for the Avatica JDBC driver
Correctly implement regular and prepared statements
Correctly implement result sets
Fix race condition with contexts
Clarify when parameters are used
Prepare for single-pass through the planner
* Addressed review comments
* Addressed review comment
Some queries like `REPLACE INTO ... SELECT TIME_PARSE("__time") AS __time FROM ...`
fail at the Calcite layer because any column with name `__time` is considered to be of
type `SqlTypeName.TIMESTAMP`.
Changes:
- Modify `RowSignatures.toRelDataType()` so that the type of `__time` column
is determined by the RowSignature's type.
Sysmonitor stats (mem, fs, disk, net, cpu, swap, sys, tcp) are reported by all Druid processes, including Peons that are ephemeral in nature. Since Peons always run on the same host as the MiddleManager that spawned them and is unlikely to change, the SyMonitor metrics emitted by Peon are merely duplicates. This is often not a problem except when machines are super-beefy. Imagine a 64-core machine and 32 workers running on this machine. now you will have each Peon reporting metrics for each core. that's an increase of (32 * 64)x in the number of metrics. This leads to a metric explosion.
This PR updates MetricsModule to check node role running while registering SysMonitor and not to load any existing SysMonitor$Stats.
This commit suppresses the following CVEs:
- CVE-2021-43138: false alarm for async-http-client
- CVE-2021-34538: applicable to Hive server
- CVE-2020-25638: requires hibernate update, which causes Hadoop ingestion failure
- CVE-2021-27568: false alarm for accessors-smart which is a dependency of json-smart (already suppressed)
* Add clarification for combining input source
* Update inputFormat note
* Update maxNumConcurrentSubTasks note
* Fix broken link
* Update docs/ingestion/native-batch-input-source.md
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Co-authored-by: Charles Smith <techdocsmith@gmail.com>
Few indexing tasks register RealtimeMetricsMonitor or TaskRealtimeMetricsMonitor with the process’s MonitorScheduler when they start. These monitors never unregister themselves (they always return true, they'd need to return false to unregister). Each of these monitors emits a set of metrics once every druid.monitoring.emissionPeriod.
As a result, after executing several tasks for a while, Indexer emits metrics of these tasks even after they're long gone.
Proposed Solution
Since one should be able to obtain the last round of ingestion metrics after the task unregisters the monitor, introducing lastRoundMetricsToBePushed variable to keep track of the same and overriding the AbstractMonitor.monitor method in RealtimeMetricsMonitor, TaskRealtimeMetricsMonitor to implement the new logic.
* fix bug in ObjectFlatteners.toMap which caused null values in avro-stream/avro-ocf/parquet/orc to be converted to {} instead of null
* fix parquet test that expected wrong behavior, my bad heh
* initial commit of bucket dimensions for metrics
return counts of segments that have rowcount in a bucket size for a datasource
return average value of rowcount per segment in a datasource
added unit test
naming could use a lot of work
buckets right now are not finalized
added javadocs
altered metrics.md
* fix checkstyle issues
* addressed review comments
add monitor test
move added functionality to new monitor
update docs
* address comments
renamed monitor
handle tombstones better
update docs
added javadocs
* Add support for tombstones in the segment distribution
* undo changes to tombstone segmentizer factory
* fix accidental whitespacing changes
* address comments regarding metrics documentation
and rename variable to be more accurate
* fix tests
* fix checkstyle issues
* fix broken test
* undo removal of timeout
* Automatic sizing for GroupBy dictionary sizes.
Merging and selector dictionary sizes currently both default to 100MB.
This is not optimal, because it can lead to OOM on small servers and
insufficient resource utilization on larger servers. It also invites
end users to try to tune it when queries run out of dictionary space,
which can make things worse if the end user sets it to too high.
So, this patch:
- Adds automatic tuning for selector and merge dictionaries. Selectors
use up to 15% of the heap and merge buffers use up to 30% of the heap
(aggregate across all queries).
- Updates out-of-memory error messages to emphasize enabling disk
spilling vs. increasing memory parameters. With the memory parameters
automatically sized, it is more likely that an end user will get
benefit from enabling disk spilling.
- Removes the query context parameters that allow lowering of configured
dictionary sizes. These complicate the calculation, and I don't see a
reasonable use case for them.
* Adjust tests.
* Review adjustments.
* Additional comment.
* Remove unused import.
When we return DISK_FULL to a processing thread, it skips the rest of
the segment and the query is canceled. However, it's possible that the
next segment starts processing before cancellation can kick in. We want
that one, if it occurs, to see DISK_FULL too.
* Preserve column order in DruidSchema, SegmentMetadataQuery.
Instead of putting columns in alphabetical order. This is helpful
because it makes query order better match ingestion order. It also
allows tools, like the reindexing flow in the web console, to more
easily do follow-on ingestions using a column order that matches the
pre-existing column order.
We prefer the order from the latest segments. The logic takes all
columns from the latest segments in the order they appear, then adds
on columns from older segments after those.
* Additional test adjustments.
* Adjust imports.