### Description
This change allows for consideration of the input format and compression when computing how to split the input files among available tasks, in MSQ ingestion, when considering the value of the `maxInputBytesPerWorker` query context parameter. This query parameter allows users to control the maximum number of bytes, with granularity of input file / object, that ingestion tasks will be assigned to ingest. With this change, this context parameter now denotes the estimated weighted size in bytes of the input to split on, with consideration for input format and compression format, rather than the actual file size, reported by the file system. We assume uncompressed newline delimited json as a baseline, with scaling factor of `1`. This means that when computing the byte weight that a file has towards the input splitting, we take the file size as is, if uncompressed json, 1:1. It was found during testing that gzip compressed json, and parquet, has scale factors of `4` and `8` respectively, meaning that each byte of data is weighted 4x and 8x respectively, when computing input splits. This weighted byte scaling is only considered for MSQ ingestion that uses either LocalInputSource or CloudObjectInputSource at the moment. The default value of the `maxInputBytesPerWorker` query context parameter has been updated from 10 GiB, to 512 MiB
array columns!
changes:
* add support for storing nested arrays of string, long, and double values as specialized nested columns instead of breaking them into separate element columns
* nested column type mimic behavior means that columns ingested with only root arrays of primitive values will be ARRAY typed columns
* neat test refactor stuff
* add v4 segment test
* add array element indexes
* add tests for unnest and array columns
* fix unnest column value selector cursor handling of null and empty arrays
* discover nested columns when using nested column indexer for schemaless
* move useNestedColumnIndexerForSchemaDiscovery from AppendableIndexSpec to DimensionsSpec
* introduce a "tree" type to the flattenSpec
* feedback - rename exprs to nodes, use CollectionsUtils.isNullOrEmpty for guard
* feedback - expand docs to more clearly capture limitations of "tree" flattenSpec
* feedback - fix for typo on docs
* introduce a comment to explain defensive copy, tweak null handling
* fix: part of rebase
* mark ObjectFlatteners.FlattenerMaker as an ExtensionPoint and provide default for new tree type
* fix: objectflattener restore previous behavior to call getRootField for root type
* docs: ingestion/data-formats add note that ORC only supports path expressions
* chore: linter remove unused import
* fix: use correct newer form for empty DimensionsSpec in FlattenJSONBenchmark
* Cleaner JSON for various input sources and formats.
Add JsonInclude to various properties, to avoid population of default
values in serialized JSON.
Also fixes a bug in OrcInputFormat: it was not writing binaryAsString,
so the property would be lost on serde.
* Additonal test cases.
Historicals and middle managers crash with an `UnknownHostException` on trying
to load `druid-parquet-extensions` with an ephemeral Hadoop cluster. This happens
because the `fs.defaultFS` URI value cannot be resolved at start up time as the
hadoop cluster may not exist at startup time.
This commit fixes the error by performing initialization of the filesystem in
`ParquetInputFormat.createReader()` whenever a new reader is requested.
* fix bug in ObjectFlatteners.toMap which caused null values in avro-stream/avro-ocf/parquet/orc to be converted to {} instead of null
* fix parquet test that expected wrong behavior, my bad heh
* Always reopen stream in FileUtils.copyLarge, RetryingInputStream.
When an InputStream throws an exception from one of its read methods,
we should assume it's bad and reopen it.
The main changes here are:
- In FileUtils.copyLarge, replace InputStream with InputStreamSupplier.
- In RetryingInputStream, collapse retryCondition and resetCondition
into a single condition. Also, make it required, since every usage
is passing in a specific condition anyway.
* Test fixes.
* Fix read impl.
This PR aims to make the ParseExceptions in Druid more informative, by adding additional information (metadata) to the ParseException, which can contain additional information about the exception. For example - the path of the file generating the issue, the line number (where it can be easily fetched - like CsvReader)
Following changes are addressed in this PR:
A new class CloseableIteratorWithMetadata has been created which is like CloseableIterator but also has a metadata method that returns a context Map<String, Object> about the current element returned by next().
IntermediateRowParsingReader#read() now attaches the InputEntity and the "record number" which created the exception (while parsing them), and IntermediateRowParsingReader#sample attaches the InputEntity (but not the "record number").
TextReader (and its subclasses), which is a specific implementation of the IntermediateRowParsingReader also include the line number which caused the generation of the error.
This will also help in triaging the issues when InputSourceReader generates ParseException because it can point to the specific InputEntity which caused the exception (while trying to read it).
* Add jsonPath functions support
* Add jsonPath function test for Avro
* Add jsonPath function length() to Orc
* Add jsonPath function length() to Parquet
* Add more tests to ORC format
* update doc
* Fix exception during ingestion
* Add IT test case
* Revert "Fix exception during ingestion"
This reverts commit 5a5484b9ea.
* update IT test case
* Add 'keys()'
* Commit IT test case
* Fix UT
changes:
* adds new config, druid.expressions.useStrictBooleans which make longs the official boolean type of all expressions
* vectorize logical operators and boolean functions, some only if useStrictBooleans is true
* Avro union support
* Document new union support
* Add support for AvroStreamInputFormat and fix checkstyle
* Extend multi-member union test schema and format
* Some additional docs and add Enums to spelling
* Rename explodeUnions -> extractUnions
* explode -> extract
* ByType
* Correct spelling error
* DruidInputSource: Fix issues in column projection, timestamp handling.
DruidInputSource, DruidSegmentReader changes:
1) Remove "dimensions" and "metrics". They are not necessary, because we
can compute which columns we need to read based on what is going to
be used by the timestamp, transform, dimensions, and metrics.
2) Start using ColumnsFilter (see below) to decide which columns we need
to read.
3) Actually respect the "timestampSpec". Previously, it was ignored, and
the timestamp of the returned InputRows was set to the `__time` column
of the input datasource.
(1) and (2) together fix a bug in which the DruidInputSource would not
properly read columns that are used as inputs to a transformSpec.
(3) fixes a bug where the timestampSpec would be ignored if you attempted
to set the column to something other than `__time`.
(1) and (3) are breaking changes.
Web console changes:
1) Remove "Dimensions" and "Metrics" from the Druid input source.
2) Set timestampSpec to `{"column": "__time", "format": "millis"}` for
compatibility with the new behavior.
Other changes:
1) Add ColumnsFilter, a new class that allows input readers to determine
which columns they need to read. Currently, it's only used by the
DruidInputSource, but it could be used by other columnar input sources
in the future.
2) Add a ColumnsFilter to InputRowSchema.
3) Remove the metric names from InputRowSchema (they were unused).
4) Add InputRowSchemas.fromDataSchema method that computes the proper
ColumnsFilter for given timestamp, dimensions, transform, and metrics.
5) Add "getRequiredColumns" method to TransformSpec to support the above.
* Various fixups.
* Uncomment incorrectly commented lines.
* Move TransformSpecTest to the proper module.
* Add druid.indexer.task.ignoreTimestampSpecForDruidInputSource setting.
* Fix.
* Fix build.
* Checkstyle.
* Misc fixes.
* Fix test.
* Move config.
* Fix imports.
* Fixup.
* Fix ShuffleResourceTest.
* Add import.
* Smarter exclusions.
* Fixes based on tests.
Also, add TIME_COLUMN constant in the web console.
* Adjustments for tests.
* Reorder test data.
* Update docs.
* Update docs to say Druid 0.22.0 instead of 0.21.0.
* Fix test.
* Fix ITAutoCompactionTest.
* Changes from review & from merging.
* support multi-line text
* add test cases
* split json text into lines case by case
* improve exception handle
* fix CI
* use IntermediateRowParsingReader as base of JsonReader
* update doc
* ignore the non-immutable field in test case
* add more test cases
* mark `lineSplittable` as final
* fix testcases
* fix doc
* add a test case for SqlReader
* return all raw columns when exception occurs
* fix CI
* fix test cases
* resolve review comments
* handle ParseException returned by index.add
* apply Iterables.getOnlyElement
* fix CI
* fix test cases
* improve code in more graceful way
* fix test cases
* fix test cases
* add a test case to check multiple json string in one text block
* fix inspection check
* Run IntelliJ inspections on Travis
Running IntelliJ inspections currently takes about 90 minutes, but they
can be run in about 30 minutes on Travis.
* Restore assert statements
* add parquet support to native batch
* cleanup
* implement toJson for sampler support
* better binaryAsString test
* docs
* i hate spellcheck
* refactor toMap conversion so can be shared through flattenerMaker, default impls should be good enough for orc+avro, fixup for merge with latest
* add comment, fix some stuff
* adjustments
* fix accident
* tweaks
Make static imports forbidden in tests and remove all occurrences to be
consistent with the non-test code.
Also, various changes to files affected by above:
- Reformat to adhere to druid style guide
- Fix various IntelliJ warnings
- Fix various SonarLint warnings (e.g., the expected/actual args to
Assert.assertEquals() were flipped)
* Bump Apache Avro to 1.9.0
Apache Avro 1.9.0 brings a lot of new features:
* Deprecate Joda-Time in favor of Java8 JSR310 and setting it as default
* Remove support for Hadoop 1.x
* Move from Jackson 1.x to 2.9
* Add ZStandard Codec
* Lots of updates on the dependencies to fix CVE's
* Remove Jackson classes from public API
* Apache Avro is built by default with Java 8
* Apache Avro is compiled and tested with Java 11 to guarantee compatibility
* Apache Avro MapReduce is compiled and tested with Hadoop 3
* Apache Avro is now leaner, multiple dependencies were removed: guava, paranamer, commons-codec, and commons-logging
* Introduce JMH Performance Testing Framework
* Add Snappy support for C++ DataFile
* and many, many more!
* Add exclusions for Jackson
* Remove Apache Pig from the tests
* Remove the Pig specific part
* Fix the Checkstyle issues
* Cleanup a bit
* Add an additional test
* Revert the abstract class
* Add checkstyle rules about imports and empty lines between members
* Add suppressions
* Update Eclipse import order
* Add empty line
* Fix StatsDEmitter
* move parquet-extensions from contrib to core, adds new hadoop parquet parser that does not convert to avro first and supports flattenSpec and int96 columns, add support for flattenSpec for parquet-avro conversion parser, much test with a bunch of files lifted from spark-sql
* fix avro flattener to support nullable primitives for auto discovery and now only supports primitive arrays instead of all arrays
* remove leftover print
* convert micro timestamp to millis
* checkstyle
* add ignore for .parquet and .parq to rat exclude
* fix legit test failure from avro flattern behavior change
* fix rebase
* add exclusions to pom to cut down on redundant jars
* refactor tests, add support for unwrapping lists for parquet-avro, review comments
* more comment
* fix oops
* tweak parquet-avro list handling
* more docs
* fix style
* grr styles