* Support complex variance object inputs for variance SQL agg function
* Add test
* Include complexTypeChecker, address PR comments
* Checkstyle, javadoc link
This PR aims to expose a new API called
"@path("/druid/v2/sql/statements/")" which takes the same payload as the current "/druid/v2/sql" endpoint and allows users to fetch results in an async manner.
* Cache parsed expressions and binding analysis in more places.
Main changes:
1) Cache parsed and analyzed expressions within PlannerContext for a
single SQL query.
2) Cache parsed expressions together with input binding analysis using
a new class AnalyzeExpr.
This speeds up SQL planning, because SQL planning involves parsing
analyzing the same expression strings over and over again.
* Fixes.
* Fix style.
* Fix test.
* Simplify: get rid of AnalyzedExpr, focus on caching.
* Rename parse -> parseExpression.
* Updates: use the target table directly, sanitized replace time chunks and clustered by cols.
* Add DruidSqlParserUtil and tests.
* minor refactor
* Use SqlUtil.isLiteral
* Throw ValidationException if CLUSTERED BY column descending order is specified.
- Fails query planning
* Some more tests.
* fixup existing comment
* Update comment
* checkstyle fix: remove unused imports
* Remove InsertCannotOrderByDescendingFault and deprecate the fault in readme.
* minor naming
* move deprecated field to the bottom
* update docs.
* add one more example.
* Collapsible query and result
* checkstyle fixes
* Code cleanup
* order by changes
* conditionally set attributes only for explain queries.
* Cleaner ordinal check.
* Add limit test and update javadoc.
* Commentary and minor adjustments.
* Checkstyle fixes.
* One more checkArg.
* add unexpected kind to exception.
Users can now add a guardrail to prevent subquery’s results from exceeding the set number of bytes by setting druid.server.http.maxSubqueryRows in Broker's config or maxSubqueryRows in the query context. This feature is experimental for now and would default back to row-based limiting in case it fails to get the accurate size of the results consumed by the query.
* SqlResults: Coerce arrays to lists for VARCHAR.
Useful for STRING_TO_MV, which returns VARCHAR at the SQL layer and an
ExprEval with String[] at the native layer.
* Fix style.
* Improve test coverage.
* Remove unnecessary throws.
* SQL OperatorConversions: Introduce.aggregatorBuilder, allow CAST-as-literal.
Four main changes:
1) Provide aggregatorBuilder, a more consistent way of defining the
SqlAggFunction we need for all of our SQL aggregators. The mechanism
is analogous to the one we already use for SQL functions
(OperatorConversions.operatorBuilder).
2) Allow CASTs of constants to be considered as "literalOperands". This
fixes an issue where various of our operators are defined with
OperandTypes.LITERAL as part of their checkers, which doesn't allow
casts. However, in these cases we generally _do_ want to allow casts.
The important piece is that the value must be reducible to a constant,
not that the SQL text is literally a literal.
3) Update DataSketches SQL aggregators to use the new aggregatorBuilder
functionality. The main user-visible effect here is [2]: the aggregators
would now accept, for example, "CAST(0.99 AS DOUBLE)" as a literal
argument. Other aggregators could be updated in a future patch.
4) Rename "requiredOperands" to "requiredOperandCount", because the
old name was confusing. (It rhymes with "literalOperands" but the
arguments mean different things.)
* Adjust method calls.
New metrics:
- `segment/metadatacache/refresh/time`: time taken to refresh segments per datasource
- `segment/metadatacache/refresh/count`: number of segments being refreshed per datasource
Add a new planning strategy that explicitly decouples the DAG from building the native query.
With this mode, it is Calcite's job to generate a "logical DAG" which is all of the various
DruidProject, DruidFilter, etc. nodes. We then take those nodes and use them to build a native
query. The current commit doesn't pass all tests, but it does work for some things and is a
decent starting baseline.
Introduce DruidException, an exception whose goal in life is to be delivered to a user.
DruidException itself has javadoc on it to describe how it should be used. This commit both introduces the Exception and adjusts some of the places that are generating exceptions to generate DruidException objects instead, as a way to show how the Exception should be used.
This work was a 3rd iteration on top of work that was started by Paul Rogers. I don't know if his name will survive the squash-and-merge, so I'm calling it out here and thanking him for starting on this.
Description:
Druid allows a configuration of load rules that may cause a used segment to not be loaded
on any historical. This status is not tracked in the sys.segments table on the broker, which
makes it difficult to determine if the unavailability of a segment is expected and if we should
not wait for it to be loaded on a server after ingestion has finished.
Changes:
- Track replication factor in `SegmentReplicantLookup` during evaluation of load rules
- Update API `/druid/coordinator/v1metadata/segments` to return replication factor
- Add column `replication_factor` to the sys.segments virtual table and populate it in
`MetadataSegmentView`
- If this column is 0, the segment is not assigned to any historical and will not be loaded.
* Throw ValidationException if CLUSTERED BY column descending order is specified.
- Fails query planning
* Some more tests.
* fixup existing comment
* Update comment
* checkstyle fix: remove unused imports
* Remove InsertCannotOrderByDescendingFault and deprecate the fault in readme.
* move deprecated field to the bottom
changes:
* auto columns no longer participate in generic 'null column' handling, this was a mistake to try to support and caused ingestion failures due to mismatched ColumnFormat, and will be replaced in the future with nested common format constant column functionality (not in this PR)
* fix bugs with auto columns which contain empty objects, empty arrays, or primitive types mixed with either of these empty constructs
* fix bug with bound filter when upper is null equivalent but is strict
* Add INFORMATION_SCHEMA.ROUTINES to expose Druid operators and functions.
* checkstyle
* remove IS_DETERMISITIC.
* test
* cleanup test
* remove logs and simplify
* fixup unit test
* Add docs for INFORMATION_SCHEMA.ROUTINES table.
* Update test and add another SQL query.
* add stuff to .spelling and checkstyle fix.
* Add more tests for custom operators.
* checkstyle and comment.
* Some naming cleanup.
* Add FUNCTION_ID
* The different Calcite function syntax enums get translated to FUNCTION
* Update docs.
* Cleanup markdown table.
* fixup test.
* fixup intellij inspection
* Review comment: nullable column; add a function to determine function syntax.
* More tests; add non-function syntax operators.
* More unit tests. Also add a separate test for DruidOperatorTable.
* actually just validate non-zero count.
* switch up the order
* checkstyle fixes.
This PR adds the following to the ATTRIBUTES column in the explain plan output:
- partitionedBy
- clusteredBy
- replaceTimeChunks
This PR leverages the work done in #14074, which added a new column ATTRIBUTES
to encapsulate all the statement-related attributes.
* Fix EarliestLatestBySqlAggregator signature; Include function name for all signatures.
* Single quote function signatures, space between args and remove \n.
* fixup UT assertion
It was found that several supported tasks / input sources did not have implementations for the methods used by the input source security feature, causing these tasks and input sources to fail when used with this feature. This pr adds the needed missing implementations. Also securing the sampling endpoint with input source security, when enabled.
This PR adds a new interface to control how SegmentMetadataCache chooses ColumnType when faced with differences between segments for SQL schemas which are computed, exposed as druid.sql.planner.metadataColumnTypeMergePolicy and adds a new 'least restrictive type' mode to allow choosing the type that data across all segments can best be coerced into and sets this as the default behavior.
This is a behavior change around when segment driven schema migrations take effect for the SQL schema. With latestInterval, the SQL schema will be updated as soon as the first job with the new schema has published segments, while using leastRestrictive, the schema will only be updated once all segments are reindexed to the new type. The benefit of leastRestrictive is that it eliminates a bunch of type coercion errors that can happen in SQL when types are varied across segments with latestInterval because the newest type is not able to correctly represent older data, such as if the segments have a mix of ARRAY and number types, or any other combinations that lead to odd query plans.
* Make resources an ordered collection so it's deterministic.
* test cleanup
* fixup docs.
* Replace deprecated ObjectNode#put() calls with ObjectNode#set().
The "new" IT framework provides a convenient way to package and run integration tests (ITs), but only for core modules. We have a use case to run an IT for a contrib extension: the proposed gRPC query extension. This PR provides the IT framework functionality to allow non-core ITs.
* Be able to load segments on Peons
This change introduces a new config on WorkerConfig
that indicates how many bytes of each storage
location to use for storage of a task. Said config
is divided up amongst the locations and slots
and then used to set TaskConfig.tmpStorageBytesPerTask
The Peons use their local task dir and
tmpStorageBytesPerTask as their StorageLocations for
the SegmentManager such that they can accept broadcast
segments.
* fix issues with filtering nulls on values coerced to numeric types
* fix issues with 'auto' type numeric columns in default value mode
* optimize variant typed columns without nested data
* more tests for 'auto' type column ingestion
* TimeBoundary: Use cursor when datasource is not a regular table.
Fixes a bug where TimeBoundary could return incorrect results with
INNER Join or inline data.
* Addl Javadocs.
* MSQ: Subclass CalciteJoinQueryTest, other supporting changes.
The main change is the new tests: we now subclass CalciteJoinQueryTest
in CalciteSelectJoinQueryMSQTest twice, once for Broadcast and once for
SortMerge.
Two supporting production changes for default-value mode:
1) InputNumberDataSource is marked as concrete, to allow leftFilter to
be pushed down to it.
2) In default-value mode, numeric frame field readers can now return nulls.
This is necessary when stacking joins on top of joins: nulls must be
preserved for semantics that match broadcast joins and native queries.
3) In default-value mode, StringFieldReader.isNull returns true on empty
strings in addition to nulls. This is more consistent with the behavior
of the selectors, which map empty strings to null as well in that mode.
As an effect of change (2), the InsertTimeNull change from #14020 (to
replace null timestamps with default timestamps) is reverted. IMO, this
is fine, as either behavior is defensible, and the change from #14020
hasn't been released yet.
* Adjust tests.
* Style fix.
* Additional tests.
* SQL planning: Consider subqueries in fewer scenarios.
Further adjusts logic in DruidRules that was previously adjusted in #13902.
The reason for the original change was that the comment "Subquery must be
a groupBy, so stage must be >= AGGREGATE" was no longer accurate. Subqueries
do not need to be groupBy anymore; they can really be any type of query.
If I recall correctly, the change was needed for certain window queries
to be able to plan on top of Scan queries.
However, this impacts performance negatively, because it causes many
additional outer-query scenarios to be considered, which is expensive.
So, this patch updates the matching logic to consider fewer scenarios. The
skipped scenarios are ones where we expect that, for one reason or another,
it isn't necessary to consider a subquery.
* Remove unnecessary escaping.
* Fix test.
* Updating segment map function for QueryDataSource to ensure group by of group by of join data source gets into proper segment map function path
* Adding unit tests for the failed case
* There you go coverage bot, be happy now
### Description
This pr fixes a few bugs found with the inputSource security feature.
1. `KillUnusedSegmentsTask` previously had no definition for the `getInputSourceResources`, which caused an unsupportedOperationException to be thrown when this task type was submitted with the inputSource security feature enabled. This task type should not require any input source specific resources, so returning an empty set for this task type now.
2. Fixed a bug where when the input source type security feature is enabled, all of the input source type specific resources used where authenticated against:
`{"resource": {"name": "EXTERNAL", "type": "{INPUT_SOURCE_TYPE}"}, "action": "READ"}`
When they should be instead authenticated against:
`{"resource": {"name": "{INPUT_SOURCE_TYPE}", "type": "EXTERNAL"}, "action": "READ"}`
3. fixed bug where supervisor tasks were not authenticated against the specific input source types used, if input source security feature was enabled.
This commit adds attributes that contain metadata information about the query
in the EXPLAIN PLAN output. The attributes currently contain two items:
- `statementTyp`: SELECT, INSERT or REPLACE
- `targetDataSource`: provides the target datasource name for DML statements
It is added to both the legacy and native query plan outputs.
* SQL: Fix natural comparator selection for groupBy.
DruidQuery.computeSorting had some unique logic for finding natural
comparators for SQL types. It should be using getStringComparatorForRelDataType
instead.
One good effect here is that the comparator for BOOLEAN is now
NUMERIC rather than LEXICOGRAPHIC. The test case illustrates this.
* Remove msqCompatible, for now.
* Fix test.
* MSQ: Use the same result coercion routines as the regular SQL endpoint.
The main changes are to move NativeQueryMaker.coerce to SqlResults, and
to formally make the list of sqlTypeNames from the MSQ results reports
use SqlTypeNames.
- Change the default to MSQ-compatible rather than MSQ-incompatible.
The explicit marker function is now "notMsqCompatible()".
* MSQ: Support for querying lookup and inline data directly.
Main changes:
1) Add of LookupInputSpec and DataSourcePlan.forLookup.
2) Add InlineInputSpec, and modify of DataSourcePlan.forInline to use
this instead of an ExternalInputSpec with JSON. This allows the inline
data to act as the right-hand side of a join, if needed.
Supporting changes:
1) Modify JoinDataSource's leftFilter validation to be a little less
strict: it's now OK with leftFilter being attached to any concrete
leaf (no children) datasource, rather than requiring it be a table.
This allows MSQ to create JoinDataSource with InputNumberDataSource
as the base.
2) Add SegmentWranglerModule to CliIndexer, CliPeon. This allows them to
query lookups and inline data directly.
* Updates based on CI.
* Additional tests.
* Style fix.
* Remove unused import.
### Description
This change allows for input sources used during MSQ ingestion to be authorized for multiple input source types, instead of just 1. Such an input source that allows for multiple types is the CombiningInputSource.
Also fixed bug that caused some input source specific functions to be authorized against the permissions
`
[
new ResourceAction(new Resource(ResourceType.EXTERNAL, ResourceType.EXTERNAL), Action.READ),
new ResourceAction(new Resource(ResourceType.EXTERNAL, {input_source_type}), Action.READ)
]
`
when the inputSource based authorization feature is enabled, when it should instead be authorized against
`
[
new ResourceAction(new Resource(ResourceType.EXTERNAL, {input_source_type}), Action.READ)
]
`
* Frames: Ensure nulls are read as default values when appropriate.
Fixes a bug where LongFieldWriter didn't write a properly transformed
zero when writing out a null. This had no meaningful effect in SQL-compatible
null handling mode, because the field would get treated as a null anyway.
But it does have an effect in default-value mode: it would cause Long.MIN_VALUE
to get read out instead of zero.
Also adds NullHandling checks to the various frame-based column selectors,
allowing reading of nullable frames by servers in default-value mode.
Fixes#13837.
### Description
This change allows for input source type security in the native task layer.
To enable this feature, the user must set the following property to true:
`druid.auth.enableInputSourceSecurity=true`
The default value for this property is false, which will continue the existing functionality of needing authorization to write to the respective datasource.
When this config is enabled, the users will be required to be authorized for the following resource action, in addition to write permission on the respective datasource.
`new ResourceAction(new Resource(ResourceType.EXTERNAL, {INPUT_SOURCE_TYPE}, Action.READ`
where `{INPUT_SOURCE_TYPE}` is the type of the input source being used;, http, inline, s3, etc..
Only tasks that provide a non-default implementation of the `getInputSourceResources` method can be submitted when config `druid.auth.enableInputSourceSecurity=true` is set. Otherwise, a 400 error will be thrown.
* smarter nested column index utilization
changes:
* adds skipValueRangeIndexScale and skipValuePredicateIndexScale to ColumnConfig (e.g. DruidProcessingConfig) available as system config via druid.processing.indexes.skipValueRangeIndexScale and druid.processing.indexes.skipValuePredicateIndexScale
* NestedColumnIndexSupplier uses skipValueRangeIndexScale and skipValuePredicateIndexScale to multiply by the total number of rows to be processed to determine the threshold at which we should no longer consider using bitmap indexes because it will be too many operations
* Default values for skipValueRangeIndexScale and skipValuePredicateIndexScale have been initially set to 0.08, but are separate to allow independent tuning
* these are not documented on purpose yet because they are kind of hard to explain, the mainly exist to help conduct larger scale experiments than the jmh benchmarks used to derive the initial set of values
* these changes provide a pretty sweet performance boost for filter processing on nested columns
* Always use file sizes when determining batch ingest splits.
Main changes:
1) Update CloudObjectInputSource and its subclasses (S3, GCS,
Azure, Aliyun OSS) to use SplitHintSpecs in all cases. Previously, they
were only used for prefixes, not uris or objects.
2) Update ExternalInputSpecSlicer (MSQ) to consider file size. Previously,
file size was ignored; all files were treated as equal weight when
determining splits.
A side effect of these changes is that we'll make additional network
calls to find the sizes of objects when users specify URIs or objects
as opposed to prefixes. IMO, this is worth it because it's the only way
to respect the user's split hint and task assignment settings.
Secondary changes:
1) S3, Aliyun OSS: Use getObjectMetadata instead of listObjects to get
metadata for a single object. This is a simpler call that is also
expected to be less expensive.
2) Azure: Fix a bug where getBlobLength did not populate blob
reference attributes, and therefore would not actually retrieve the
blob length.
3) MSQ: Align dynamic slicing logic between ExternalInputSpecSlicer and
TableInputSpecSlicer.
4) MSQ: Adjust WorkerInputs to ensure there is always at least one
worker, even if it has a nil slice.
* Add msqCompatible to testGroupByWithImpossibleTimeFilter.
* Fix tests.
* Add additional tests.
* Remove unused stuff.
* Remove more unused stuff.
* Adjust thresholds.
* Remove irrelevant test.
* Fix comments.
* Fix bug.
* Updates.