In the majority of cases, this improves performance.
There's only one case I'm aware of where this may be a net negative: for time_floor(__time, <period>) where there are many repeated __time values. In nonvectorized processing, SingleLongInputCachingExpressionColumnValueSelector implements an optimization to avoid computing the time_floor function on every row. There is no such optimization in vectorized processing.
IMO, we shouldn't mention this in the docs. Rationale: It's too fiddly of a thing: it's not guaranteed that nonvectorized processing will be faster due to the optimization, because it would have to overcome the inherent speed advantage of vectorization. So it'd always require testing to determine the best setting for a specific dataset. It would be bad if users disabled vectorization thinking it would speed up their queries, and it actually slowed them down. And even if users do their own testing, at some point in the future we'll implement the optimization for vectorized processing too, and it's likely that users that explicitly disabled vectorization will continue to have it disabled. I'd like to avoid this outcome by encouraging all users to enable vectorization at all times. Really advanced users would be following development activity anyway, and can read this issue
setting thread names takes a measurable amount of time in the case where segment scans are very quick. In high-QPS testing we found a slight performance boost from turning off processing thread renaming. This option makes that possible.
* Add ipaddress library as dependency.
* IPv4 functions to use the inet.ipaddr package.
* Remove unused imports.
* Add new function.
* Minor rename.
* Add more unit tests.
* IPv4 address expr utils unit tests and address options.
* Adjust the IPv4Util functions.
* Move the UTs a bit around.
* Javadoc comments.
* Add license info for IPAddress.
* Fix groupId, artifact and version in license.yaml.
* Remove redundant subnet in messages - fixes UT.
* Remove unused commons-net dependency for /processing project.
* Make class and methods public so it can be accessed.
* Add initial version of benchmark
* Add subnetutils package for benchmarks.
* Auto generate ip addresses.
* Add more v4 address representations in setup to avoid bias.
* Use ThreadLocalRandom to avoid forbidden API usage.
* Adjust IPv4AddressBenchmark to adhere to codestyle rules.
* Update ipaddress library to latest 5.3.4
* Add ipaddress package dependency to benchmarks project.
Following up on #12315, which pushed most of the logic of building ImmutableBitmap into BitmapIndex in order to hide the details of how column indexes are implemented from the Filter implementations, this PR totally refashions how Filter consume indexes. The end result, while a rather dramatic reshuffling of the existing code, should be extraordinarily flexible, eventually allowing us to model any type of index we can imagine, and providing the machinery to build the filters that use them, while also allowing for other column implementations to implement the built-in index types to provide adapters to make use indexing in the current set filters that Druid provides.
* Add feature flag for sql planning of TimeBoundary queries
* fixup! Add feature flag for sql planning of TimeBoundary queries
* Add documentation for enableTimeBoundaryPlanning
* fixup! Add documentation for enableTimeBoundaryPlanning
* Vectorized version of string last aggregator
* Updating string last and adding testcases
* Updating code and adding testcases for serializable pairs
* Addressing review comments
* GroupBy: Reduce allocations by reusing entry and key holders.
Two main changes:
1) Reuse Entry objects returned by various implementations of
Grouper.iterator.
2) Reuse key objects contained within those Entry objects.
This is allowed by the contract, which states that entries must be
processed and immediately discarded. However, not all call sites
respected this, so this patch also updates those call sites.
One particularly sneaky way that the old code retained entries too long
is due to Guava's MergingIterator and CombiningIterator. Internally,
these both advance to the next value prior to returning the current
value. So, this patch addresses that in two ways:
1) For merging, we have our own implementation MergeIterator already,
although it had the same problem. So, this patch updates our
implementation to return the current item prior to advancing to the
next item. It also adds a forbidden-api entry to ensure that this
safer implementation is used instead of Guava's.
2) For combining, we address the problem in a different way: by copying
the key when creating the new, combined entry.
* Attempt to fix test.
* Remove unused import.
* Reduce allocations due to Jackson serialization.
This patch attacks two sources of allocations during Jackson
serialization:
1) ObjectMapper.writeValue and JsonGenerator.writeObject create a new
DefaultSerializerProvider instance for each call. It has lots of
fields and creates pressure on the garbage collector. So, this patch
adds helper functions in JacksonUtils that enable reuse of
SerializerProvider objects and updates various call sites to make
use of this.
2) GroupByQueryToolChest copies the ObjectMapper for every query to
install a special module that supports backwards compatibility with
map-based rows. This isn't needed if resultAsArray is set and
all servers are running Druid 0.16.0 or later. This release was a
while ago. So, this patch disables backwards compatibility by default,
which eliminates the need to copy the heavyweight ObjectMapper. The
patch also introduces a configuration option that allows admins to
explicitly enable backwards compatibility.
* Add test.
* Update additional call sites and add to forbidden APIs.
* JvmMonitor: Handle more generation and collector scenarios.
ZGC on Java 11 only has a generation 1 (there is no 0). This causes
a NullPointerException when trying to extract the spacesCount for
generation 0. In addition, ZGC on Java 15 has a collector number 2
but no spaces in generation 2, which breaks the assumption that
collectors always have same-numbered spaces.
This patch adjusts things to be more robust, enabling the JvmMonitor
to work properly for ZGC on both Java 11 and 15.
* Test adjustments.
* Improve surefire arglines.
* Need a placeholder
* Vectorizing Latest aggregator Part 1
* Updating benchmark tests
* Changing appropriate logic for vectors for null handling
* Introducing an abstract class and moving the commonalities there
* Adding vectorization for StringLast aggregator (initial version)
* Updated bufferized version of numeric aggregators
* Adding some javadocs
* Making sure this PR vectorizes numeric latest agg only
* Adding another benchmarking test
* Fixing intellij inspections
* Adding tests for double
* Adding test cases for long and float
* Updating testcases
* Checkstyle oops..
* One tiny change in test case
* Fixing spotbug and rhs not being used
This PR enables ARM builds on Travis. I've ported over the changes from @martin-g on reducing heap requirements for some of the tests to ensure they run well on Travis arm instances.
* Support array based results in timeBoundary query
* Fix bug with query interval in timeBoundary
* Convert min(__time) and max(__time) SQL queries to timeBoundary
* Add tests for timeBoundary backed SQL queries
* Fix query plans for existing tests
* fixup! Convert min(__time) and max(__time) SQL queries to timeBoundary
* fixup! Add tests for timeBoundary backed SQL queries
* fixup! Fix bug with query interval in timeBoundary
The query context is a way that the user gives a hint to the Druid query engine, so that they enforce a certain behavior or at least let the query engine prefer a certain plan during query planning. Today, there are 3 types of query context params as below.
Default context params. They are set via druid.query.default.context in runtime properties. Any user context params can be default params.
User context params. They are set in the user query request. See https://druid.apache.org/docs/latest/querying/query-context.html for parameters.
System context params. They are set by the Druid query engine during query processing. These params override other context params.
Today, any context params are allowed to users. This can cause
1) a bad UX if the context param is not matured yet or
2) even query failure or system fault in the worst case if a sensitive param is abused, ex) maxSubqueryRows.
This PR adds an ability to limit context params per user role. That means, a query will fail if you have a context param set in the query that is not allowed to you. To do that, this PR adds a new built-in resource type, QUERY_CONTEXT. The resource to authorize has a name of the context param (such as maxSubqueryRows) and the type of QUERY_CONTEXT. To allow a certain context param for a user, the user should be granted WRITE permission on the context param resource. Here is an example of the permission.
{
"resourceAction" : {
"resource" : {
"name" : "maxSubqueryRows",
"type" : "QUERY_CONTEXT"
},
"action" : "WRITE"
},
"resourceNamePattern" : "maxSubqueryRows"
}
Each role can have multiple permissions for context params. Each permission should be set for different context params.
When a query is issued with a query context X, the query will fail if the user who issued the query does not have WRITE permission on the query context X. In this case,
HTTP endpoints will return 403 response code.
JDBC will throw ForbiddenException.
Note: there is a context param called brokerService that is used only by the router. This param is used to pin your query to run it in a specific broker. Because the authorization is done not in the router, but in the broker, if you have brokerService set in your query without a proper permission, your query will fail in the broker after routing is done. Technically, this is not right because the authorization is checked after the context param takes effect. However, this should not cause any user-facing issue and thus should be OK. The query will still fail if the user doesn’t have permission for brokerService.
The context param authorization can be enabled using druid.auth.authorizeQueryContextParams. This is disabled by default to avoid any hassle when someone upgrades his cluster blindly without reading release notes.
* add impl
* add impl
* fix checkstyle
* add impl
* add unit test
* fix stuff
* fix stuff
* fix stuff
* add unit test
* add more unit tests
* add more unit tests
* add IT
* add IT
* add IT
* add IT
* add ITs
* address comments
* fix test
* fix test
* fix test
* address comments
* address comments
* address comments
* fix conflict
* fix checkstyle
* address comments
* fix test
* fix checkstyle
* fix test
* fix test
* fix IT
* Counting nulls in String cardinality with a config
* Adding tests for the new config
* Wrapping the vectorize part to allow backward compatibility
* Adding different tests, cleaning the code and putting the check at the proper position, handling hasRow() and hasValue() changes
* Updating testcase and code
* Adding null handling test to improve coverage
* Checkstyle fix
* Adding 1 more change in docs
* Making docs clearer
* Store null columns in the segments
* fix test
* remove NullNumericColumn and unused dependency
* fix compile failure
* use guava instead of apache commons
* split new tests
* unused imports
* address comments
Added Calcites InQueryThreshold as a query context parameter. Setting this parameter appropriately reduces the time taken for queries with large number of values in their IN conditions.
* Adding null handling for double mean aggregator
* Updating code to handle nulls in DoubleMean aggregator
* oops last one should have checkstyle issues. fixed
* Updating some code and test cases
* Checking on object is null in case of numeric aggregator
* Adding one more test to improve coverage
* Changing one test as asked in the review
* Changing one test as asked in the review for nulls
* Fix error message for groupByEnableMultiValueUnnesting.
It referred to the incorrect context parameter.
Also, create a dedicated exception class, to allow easier detection of this
specific error.
* Fix other test.
* More better error messages.
* Test getDimensionName method.
Currently, the CNF conversion of a filter is unbounded, which means that it can create as many filters as possible thereby also leading to OOMs in historical heap. We should throw an error or disable CNF conversion if the filter count starts getting out of hand. There are ways to do CNF conversion with linear increase in filters as well but that has been left out of the scope of this change since those algorithms add new variables in the predicate - which can be contentious.
* Tombstone support for replace functionality
* A used segment interval is the interval of a current used segment that overlaps any of the input intervals for the spec
* Update compaction test to match replace behavior
* Adapt ITAutoCompactionTest to work with tombstones rather than dropping segments. Add support for tombstones in the broker.
* Style plus simple queriableindex test
* Add segment cache loader tombstone test
* Add more tests
* Add a method to the LogicalSegment to test whether it has any data
* Test filter with some empty logical segments
* Refactor more compaction/dropexisting tests
* Code coverage
* Support for all empty segments
* Skip tombstones when looking-up broker's timeline. Discard changes made to tool chest to avoid empty segments since they will no longer have empty segments after lookup because we are skipping over them.
* Fix null ptr when segment does not have a queriable index
* Add support for empty replace interval (all input data has been filtered out)
* Fixed coverage & style
* Find tombstone versions from lock versions
* Test failures & style
* Interner was making this fail since the two segments were consider equal due to their id's being equal
* Cleanup tombstone version code
* Force timeChunkLock whenever replace (i.e. dropExisting=true) is being used
* Reject replace spec when input intervals are empty
* Documentation
* Style and unit test
* Restore test code deleted by mistake
* Allocate forces TIME_CHUNK locking and uses lock versions. TombstoneShardSpec added.
* Unused imports. Dead code. Test coverage.
* Coverage.
* Prevent killer from throwing an exception for tombstones. This is the killer used in the peon for killing segments.
* Fix OmniKiller + more test coverage.
* Tombstones are now marked using a shard spec
* Drop a segment factory.json in the segment cache for tombstones
* Style
* Style + coverage
* style
* Add TombstoneLoadSpec.class to mapper in test
* Update core/src/main/java/org/apache/druid/segment/loading/TombstoneLoadSpec.java
Typo
Co-authored-by: Jonathan Wei <jon-wei@users.noreply.github.com>
* Update docs/configuration/index.md
Missing
Co-authored-by: Jonathan Wei <jon-wei@users.noreply.github.com>
* Typo
* Integrated replace with an existing test since the replace part was redundant and more importantly, the test file was very close or exceeding the 10 min default "no output" CI Travis threshold.
* Range does not work with multi-dim
Co-authored-by: Jonathan Wei <jon-wei@users.noreply.github.com>
* add topn heap optimization when string is dictionary encoded, but not uniquely
* use array instead
* is same
* fix javadoc
* fix
* Update StringTopNColumnAggregatesProcessor.java
* GroupBy: Cap dictionary-building selector memory usage.
New context parameter "maxSelectorDictionarySize" controls when the
per-segment processing code should return early and trigger a trip
to the merge buffer.
Includes:
- Vectorized and nonvectorized implementations.
- Adjustments to GroupByQueryRunnerTest to exercise this code in
the v2SmallDictionary suite. (Both the selector dictionary and
the merging dictionary will be small in that suite.)
- Tests for the new config parameter.
* Fix issues from tests.
* Add "pre-existing" to dictionary.
* Simplify GroupByColumnSelectorStrategy interface by removing one of the writeToKeyBuffer methods.
* Adjustments from review comments.
There aren't any changes in this patch that improve Java 11
compatibility; these changes have already been done separately. This
patch merely updates documentation and explicit Java version checks.
The log message adjustments in DruidProcessingConfig are there to make
things a little nicer when running in Java 11, where we can't measure
direct memory _directly_, and so we may auto-size processing buffers
incorrectly.
Row stats are reported for single phase tasks in the `/liveReports` and `/rowStats` APIs
and are also a part of the overall task report. This commit adds changes to report
row stats for multiphase tasks too.
Changes:
- Add `TaskReport` in `GeneratedPartitionsReport` generated during hash and range partitioning
- Collect the reports for `index_generate` phase in `ParallelIndexSupervisorTask`
* upgrade Airline to Airline 2
https://github.com/airlift/airline is no longer maintained, updating to
https://github.com/rvesse/airline (Airline 2) to use an actively
maintained version, while minimizing breaking changes.
Note, this is a backwards incompatible change, and extensions relying on
the CliCommandCreator extension point will also need to be updated.
* fix dependency checks where jakarta.inject is now resolved first instead
of javax.inject, due to Airline 2 using jakarta
* perf: indexing: Introduce a bulk getValuesInto function to read values in bulk
If large number of values are required from DimensionDictionary
during indexing, fetch them all in a single lock/unlock instead of
lock/unlock each individual item.
* refactor: rename key to keys in function args
* fix: check explicitly that argument length on arrays match
* refactor: getValuesInto renamed to getValues, now creates and returns a new T[] rather than filling
As part of #12078 one of the followup's was to have a specific config which does not allow accidental unnesting of multi value columns if such columns become part of the grouping key.
Added a config groupByEnableMultiValueUnnesting which can be set in the query context.
The default value of groupByEnableMultiValueUnnesting is true, therefore it does not change the current engine behavior.
If groupByEnableMultiValueUnnesting is set to false, the query will fail if it encounters a multi-value column in the grouping key.
* Moving in filter check to broker
* Adding more unit tests, making error message meaningful
* Spelling and doc changes
* Updating default to -1 and making this feature hide by default. The number of IN filters can grow upto a max limit of 100
* Removing upper limit of 100, updated docs
* Making documentation more meaningful
* Moving check outside to PlannerConfig, updating test cases and adding back max limit
* Updated with some additional code comments
* Missed removing one line during the checkin
* Addressing doc changes and one forbidden API correction
* Final doc change
* Adding a speling exception, correcting a testcase
* Reading entire filter tree to address combinations of ANDs and ORs
* Specifying in docs that, this case works only for ORs
* Revert "Reading entire filter tree to address combinations of ANDs and ORs"
This reverts commit 81ca8f8496.
* Covering a class cast exception and updating docs
* Counting changed
Co-authored-by: Jihoon Son <jihoonson@apache.org>
* rework sql planner expression and virtual column handling
* simplify a bit
* add back and deprecate old methods, more tests, fix multi-value string coercion bug and associated tests
* spotbugs
* fix bugs with multi-value string array expression handling
* javadocs and adjust test
* better
* fix tests
* array_concat_agg and array_agg support for array inputs
changes:
* added array_concat_agg to aggregate arrays into a single array
* added array_agg support for array inputs to make nested array
* added 'shouldAggregateNullInputs' and 'shouldCombineAggregateNullInputs' to fix a correctness issue with STRING_AGG and ARRAY_AGG when merging results, with dual purpose of being an optimization for aggregating
* fix test
* tie capabilities type to legacy mode flag about coercing arrays to strings
* oops
* better javadoc
* Harmonize implementations of "visit" for Exprs from ExprMacros.
Many of them had bugs where they would not visit all of the original
arguments. I don't think this has user-visible consequences right now,
but it's possible it would in a future world where "visit" is used
for more stuff than it is today.
So, this patch all updates all implementations to a more consistent
style that emphasizes reapplying the macro to the shuttled args.
* Test fixes, test coverage, PR review comments.