
Druid: A Real-time Analytical Data Store

Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, Deep Ganguli
{fangjin, cheddar, xavier, nelson, gian, deep}@metamarkets.com

ABSTRACT
Druid is an open source1 data store designed for real-time exploratory

analytics on large data sets. The system combines a column-oriented

storage layout, a distributed, shared-nothing architecture, and an

advanced indexing structure to allow for the arbitrary exploration

of billion-row tables with sub-second latencies. In this paper, we

describe Druid’s architecture, and detail how it supports fast aggre-

gations, flexible filters, and low latency data ingestion.

1. INTRODUCTION
In recent years, the proliferation of internet technology has created a

surge in machine-generated events. Individually, these events con-

tain minimal useful information and are of low value. Given the

time and resources required to extract meaning from large collec-

tions of events, many companies were willing to discard this data in-

stead. Although infrastructure has been built to handle event based

data (e.g. IBM’s Netezza[37], HP’s Vertica[5], and EMC’s Green-

plum[29]), they are largely sold at high price points and are only

targeted towards those companies who can afford the offering.

A few years ago, Google introducedMapReduce [11] as their mech-

anism of leveraging commodity hardware to index the internet and

analyze logs. TheHadoop [36] project soon followed andwas largely

patterned after the insights that came out of the original MapRe-

duce paper. Hadoop is currently deployed in many organizations

to store and analyze large amounts of log data. Hadoop has con-

tributed much to helping companies convert their low-value event

streams into high-value aggregates for a variety of applications such

as business intelligence and A-B testing.

As with a lot of great systems, Hadoop has opened our eyes to a new

space of problems. Specifically, Hadoop excels at storing and pro-

viding access to large amounts of data, however, it does not make

any performance guarantees around how quickly that data can be

accessed. Furthermore, although Hadoop is a highly available sys-

tem, performance degrades under heavy concurrent load. Lastly,

while Hadoop works well for storing data, it is not optimized for

ingesting data and making that data immediately readable.

Early on in the development of the Metamarkets product, we ran

into each of these issues and came to the realization that Hadoop is

a great back-office, batch processing, and data warehousing system.

However, as a company that has product-level guarantees around

query performance and data availability in a highly concurrent en-

vironment (1000+ users), Hadoop wasn’t going to meet our needs.

We explored different solutions in the space, and after trying both

1https://github.com/metamx/druid

Relational Database Management Systems and NoSQL architec-

tures, we came to the conclusion that there was nothing in the open

source world that could be fully leveraged for our requirements.

We ended up creating Druid, an open-source, distributed, column-

oriented, realtime analytical data store. In many ways, Druid shares

similarities with other OLAP systems [30, 35, 22], interactive query

systems [28], main-memory databases [14], and widely-known dis-

tributed data stores [7, 12, 23]. The distribution and query model

also borrow ideas from current generation search infrastructure [25,

3, 4].

This paper describes the architecture of Druid, explores the various

design decisions made in creating an always-on production system

that powers a hosted service, and attempts to help inform anyone

who faces a similar problem about a potential method of solving it.

Druid is deployed in production at several technology companies2.

The structure of the paper is as follows: we first describe the prob-

lem in Section 2. Next, we detail system architecture from the point

of view of how data flows through the system in Section 3. We

then discuss how and why data gets converted into a binary format

in Section 4. We briefly describe the query API in Section 5 and

present performance results in Section 6. Lastly, we leave off with

our lessons from running Druid in production in Section 7, and re-

lated work in Section 8.

2. PROBLEM DEFINITION
Druid was originally designed to solve problems around ingesting

and exploring large quantities of transactional events (log data).

This form of timeseries data is commonly found in OLAP work-

flows and the nature of the data tends to be very append heavy. For

example, consider the data shown in Table 2. Table 2 contains data

for edits that have occurred on Wikipedia. Each time a user edits

a page in Wikipedia, an event is generated that contains metadata

about the edit. This metadata is comprised of 3 distinct compo-

nents. First, there is a timestamp column indicating when the edit

was made. Next, there are a set dimension columns indicating var-

ious attributes about the edit such as the page that was edited, the

user who made the edit, and the location of the user. Finally, there

are a set of metric columns that contain values (usually numeric)

that can be aggregated, such as the number of characters added or

removed in an edit.

Our goal is to rapidly compute drill-downs and aggregates over this

data. Wewant to answer questions like “Howmany edits weremade

on the page Justin Bieber frommales in San Francisco?” and “What

2http://druid.io/druid.html

https://github.com/metamx/druid
http://druid.io/druid.html

Timestamp Page Username Gender City Characters Added Characters Removed

2011-01-01T01:00:00Z Justin Bieber Boxer Male San Francisco 1800 25

2011-01-01T01:00:00Z Justin Bieber Reach Male Waterloo 2912 42

2011-01-01T02:00:00Z Ke$ha Helz Male Calgary 1953 17

2011-01-01T02:00:00Z Ke$ha Xeno Male Taiyuan 3194 170

Table 1: Sample Druid data for edits that have occurred on Wikipedia.

is the average number of characters that were added by people from

Calgary over the span of a month?”. We also want queries over

any arbitrary combination of dimensions to return with sub-second

latencies.

The need for Druid was facilitated by the fact that existing open

source Relational Database Management Systems (RDBMS) and

NoSQL key/value stores were unable to provide a low latency data

ingestion and query platform for interactive applications [40]. In the

early days of Metamarkets, we were focused on building a hosted

dashboard that would allow users to arbitrary explore and visualize

event streams. The data store powering the dashboard needed to

return queries fast enough that the data visualizations built on top

of it could provide users with an interactive experience.

In addition to the query latency needs, the system had to be multi-

tenant and highly available. The Metamarkets product is used in a

highly concurrent environment. Downtime is costly andmany busi-

nesses cannot afford to wait if a system is unavailable in the face of

software upgrades or network failure. Downtime for startups, who

often lack proper internal operations management, can determine

business success or failure.

Finally, another key problem that Metamarkets faced in its early

days was to allow users and alerting systems to be able to make

business decisions in ”real-time”. The time from when an event is

created to when that event is queryable determines how fast users

and systems are able to react to potentially catastrophic occurrences

in their systems. Popular open source data warehousing systems

such as Hadoop were unable to provide the sub-second data inges-

tion latencies we required.

The problems of data exploration, ingestion, and availability span

multiple industries. Since Druid was open sourced in October 2012,

it been deployed as a video, network monitoring, operations mon-

itoring, and online advertising analytics platform in multiple com-

panies.

3. ARCHITECTURE
A Druid cluster consists of different types of nodes and each node

type is designed to perform a specific set of things. We believe this

design separates concerns and simplifies the complexity of the sys-

tem. The different node types operate fairly independent of each

other and there is minimal interaction between them. Hence, intra-

cluster communication failures have minimal impact on data avail-

ability. To solve complex data analysis problems, the different node

types come together to form a fully working system. The name

Druid comes from the Druid class in many role-playing games: it is

a shape-shifter, capable of taking on many different forms to fulfill

various different roles in a group. The composition of and flow of

data in a Druid cluster are shown in Figure 1.

3.1 Real-time Nodes
Real-time nodes encapsulate the functionality to ingest and query

event streams. Events indexed via these nodes are immediately

available for querying. The nodes are only concerned with events

for some small time range and periodically hand off immutable

batches of events they’ve collected over this small time range to

other nodes in the Druid cluster that are specialized in dealing with

batches of immutable events. Real-time nodes leverage Zookeeper

[19] for coordination with the rest of the Druid cluster. The nodes

announce their online state and the data they are serving in Zookeeper.

Real-time nodes maintain an in-memory index buffer for all in-

coming events. These indexes are incrementally populated as new

events are ingested and the indexes are also directly queryable. Druid

behaves as a row store for queries on events that exist in this JVM

heap-based buffer. To avoid heap overflow problems, real-time

nodes persist their in-memory indexes to disk either periodically

or after some maximum row limit is reached. This persist process

converts data stored in the in-memory buffer to a column oriented

storage format described in Section 4. Each persisted index is im-

mutable and real-time nodes load persisted indexes into off-heap

memory such that they can still be queried. This process is de-

scribed in detail in [33] and is illustrated in Figure 2.

On a periodic basis, each real-time node will schedule a background

task that searches for all locally persisted indexes. The task merges

these indexes together and builds an immutable block of data that

contains all the events that have ingested by a real-time node for

some span of time. We refer to this block of data as a ”segment”.

During the handoff stage, a real-time node uploads this segment to

a permanent backup storage, typically a distributed file system such

as S3 [12] or HDFS [36], which Druid refers to as ”deep storage”.

The ingest, persist, merge, and handoff steps are fluid; there is no

data loss during any of the processes.

Figure 3 illustrates the operations of a real-time node. The node

starts at 13:37 and will only accept events for the current hour or the

next hour. When events are ingested, the node announces that it is

serving a segment of data for an interval from 13:00 to 14:00. Every

10 minutes (the persist period is configurable), the node will flush

and persist its in-memory buffer to disk. Near the end of the hour,

the node will likely see events for 14:00 to 15:00. When this occurs,

the node prepares to serve data for the next hour and creates a new

in-memory index. The node then announces that it is also serving

a segment from 14:00 to 15:00. The node does not immediately

merge persisted indexes from 13:00 to 14:00, instead it waits for

a configurable window period for straggling events from 13:00 to

14:00 to arrive. This window period minimizes the risk of data loss

from delays in event delivery. At the end of the window period, the

node merges all persisted indexes from 13:00 to 14:00 into a single

immutable segment and hands the segment off. Once this segment

is loaded and queryable somewhere else in the Druid cluster, the

real-time node flushes all information about the data it collected for

13:00 to 14:00 and unannounces it is serving this data.

Figure 1: An overview of a Druid cluster and the flow of data through the cluster.

Figure 2: Real-time nodes first buffer events in memory. On a

periodic basis, the in-memory index is persisted to disk. On an-

other periodic basis, all persisted indexes are merged together

and handed off. Queries will hit the in-memory index and the

persisted indexes.

3.1.1 Availability and Scalability
Real-time nodes are a consumer of data and require a corresponding

producer to provide the data stream. Commonly, for data durability

purposes, a message bus such as Kafka [21] sits between the pro-

ducer and the real-time node as shown in Figure 4. Real-time nodes

ingest data by reading events from the message bus. The time from

event creation to event consumption is ordinarily on the order of

hundreds of milliseconds.

The purpose of the message bus in Figure 4 is two-fold. First, the

message bus acts as a buffer for incoming events. A message bus

such as Kafka maintains positional offsets indicating how far a con-

sumer (a real-time node) has read in an event stream. Consumers

can programmatically update these offsets. Real-time nodes update

this offset each time they persist their in-memory buffers to disk. In

a fail and recover scenario, if a node has not lost disk, it can reload

all persisted indexes from disk and continue reading events from

the last offset it committed. Ingesting events from a recently com-

mitted offset greatly reduces a node’s recovery time. In practice,

we see nodes recover from such failure scenarios in a few seconds.

The second purpose of the message bus is to act as a single endpoint

fromwhich multiple real-time nodes can read events. Multiple real-

time nodes can ingest the same set of events from the bus, creating

a replication of events. In a scenario where a node completely fails

and loses disk, replicated streams ensure that no data is lost. A sin-

gle ingestion endpoint also allows for data streams for be partitioned

such that multiple real-time nodes each ingest a portion of a stream.

This allows additional real-time nodes to be seamlessly added. In

practice, this model has allowed one of the largest production Druid

clusters to be able to consume raw data at approximately 500 MB/s

(150,000 events/s or 2 TB/hour).

3.2 Historical Nodes
Historical nodes encapsulate the functionality to load and serve the

immutable blocks of data (segments) created by real-time nodes. In

many real-world workflows, most of the data loaded in a Druid clus-

ter is immutable and hence, historical nodes are typically the main

workers of aDruid cluster. Historical nodes follow a shared-nothing

architecture and there is no single point of contention among the

nodes. The nodes have no knowledge of one another and are op-

erationally simple; they only know how to load, drop, and serve

immutable segments.

Similar to real-time nodes, historical nodes announce their online

state and the data they are serving in Zookeeper. Instructions to

load and drop segments are sent over Zookeeper and contain infor-

mation about where the segment is located in deep storage and how

to decompress and process the segment. Before a historical node

downloads a particular segment from deep storage, it first checks a

local cache that maintains information about what segments already

exist on the node. If information about a segment is not present in

the cache, the historical node will proceed to download the segment

from deep storage. This process is shown in Figure 5. Once pro-

cessing is complete, the segment is announced in Zookeeper. At

this point, the segment is queryable. The local cache also allows

for historical nodes to be quickly updated and restarted. On startup,

the node examines its cache and immediately serves whatever data

it finds.

Historical nodes can support read consistency because they only

deal with immutable data. Immutable data blocks also enable a sim-

ple parallelization model: historical nodes can concurrently scan

and aggregate immutable blocks without blocking.

Figure 3: The node starts, ingests data, persists, and periodically hands data off. This process repeats indefinitely. The time intervals

between different real-time node operations are configurable.

Figure 4: Multiple real-time nodes can read from the samemes-

sage bus. Each node maintains its own offset.

Figure 5: Historical nodes download immutable segments from

deep storage. Segments must be loaded in memory before they

can be queried.

3.2.1 Tiers
Historical nodes can be grouped in different tiers, where all nodes in

a given tier are identically configured. Different performance and

fault-tolerance parameters can be set for each tier. The purpose of

tiered nodes is to enable higher or lower priority segments to be dis-

tributed according to their importance. For example, it is possible

to spin up a “hot” tier of historical nodes that have a high num-

ber of cores and large memory capacity. The “hot” cluster can be

configured to download more frequently accessed data. A parallel

“cold” cluster can also be created with much less powerful backing

hardware. The “cold” cluster would only contain less frequently

accessed segments.

3.2.2 Availability
Historical nodes depend on Zookeeper for segment load and unload

instructions. If Zookeeper becomes unavailable, historical nodes

are no longer able to serve new data and drop outdated data, how-

ever, because the queries are served over HTTP, historical nodes are

still be able to respond to query requests for the data they are cur-

rently serving. This means that Zookeeper outages do not impact

current data availability on historical nodes.

3.3 Broker Nodes
Broker nodes act as query routers to historical and real-time nodes.

Broker nodes understand themetadata published in Zookeeper about

what segments are queryable and where those segments are located.

Broker nodes route incoming queries such that the queries hit the

right historical or real-time nodes. Broker nodes also merge partial

results from historical and real-time nodes before returning a final

consolidated result to the caller.

3.3.1 Caching
Broker nodes contain a cachewith a LRU [31, 20] invalidation strat-

egy. The cache can use local heapmemory or an external distributed

key/value store such as Memcached [16]. Each time a broker node

receives a query, it first maps the query to a set of segments. Results

for certain segments may already exist in the cache and there is no

need to recompute them. For any results that do not exist in the

cache, the broker node will forward the query to the correct histor-

ical and real-time nodes. Once historical nodes return their results,

the broker will cache these results on a per segment basis for future

use. This process is illustrated in Figure 6. Real-time data is never

cached and hence requests for real-time data will always be for-

warded to real-time nodes. Real-time data is perpetually changing

and caching the results would be unreliable.

The cache also acts as an additional level of data durability. In the

event that all historical nodes fail, it is still possible to query results

if those results already exist in the cache.

3.3.2 Availability
In the event of a total Zookeeper outage, data is still queryable. If

broker nodes are unable to communicate to Zookeeper, they use

their last known view of the cluster and continue to forward queries

to real-time and historical nodes. Broker nodes make the assump-

tion that the structure of the cluster is the same as it was before the

outage. In practice, this availability model has allowed our Druid

cluster to continue serving queries for a significant period of time

while we diagnosed Zookeeper outages.

3.4 Coordinator Nodes
Druid coordinator nodes are primarily in charge of data manage-

ment and distribution on historical nodes. The coordinator nodes

tell historical nodes to load new data, drop outdated data, replicate

data, and move data to load balance. Druid uses a multi-version

concurrency control swapping protocol for managing immutable

segments in order to maintain stable views. If any immutable seg-

ment contains data that is wholly obseleted by newer segments, the

outdated segment is dropped from the cluster. Coordinator nodes

undergo a leader-election process that determines a single node that

runs the coordinator functionality. The remaining coordinator nodes

act as redundant backups.

A coordinator node runs periodically to determine the current state

of the cluster. It makes decisions by comparing the expected state of

the cluster with the actual state of the cluster at the time of the run.

As with all Druid nodes, coordinator nodes maintain a Zookeeper

connection for current cluster information. Coordinator nodes also

maintain a connection to aMySQL database that contains additional

operational parameters and configurations. One of the key pieces

of information located in the MySQL database is a table that con-

tains a list of all segments that should be served by historical nodes.

This table can be updated by any service that creates segments, for

example, real-time nodes. The MySQL database also contains a

rule table that governs how segments are created, destroyed, and

replicated in the cluster.

3.4.1 Rules
Rules govern how historical segments are loaded and dropped from

the cluster. Rules indicate how segments should be assigned to dif-

ferent historical node tiers and how many replicates of a segment

should exist in each tier. Rules may also indicate when segments

should be dropped entirely from the cluster. Rules are usually set

for a period of time. For example, a user may use rules to load the

most recent one month’s worth of segments into a ”hot” cluster, the

most recent one year’s worth of segments into a ”cold” cluster, and

drop any segments that are older.

The coordinator nodes load a set of rules from a rule table in the

MySQL database. Rules may be specific to a certain data source

and/or a default set of rules may be configured. The coordinator

node will cycle through all available segments and match each seg-

ment with the first rule that applies to it.

3.4.2 Load Balancing
In a typical production environment, queries often hit dozens or

even hundreds of segments. Since each historical node has limited

resources, segments must be distributed among the cluster to en-

sure that the cluster load is not too imbalanced. Determining opti-

mal load distribution requires some knowledge about query patterns

and speeds. Typically, queries cover recent segments spanning con-

tiguous time intervals for a single data source. On average, queries

that access smaller segments are faster.

These query patterns suggest replicating recent historical segments

at a higher rate, spreading out large segments that are close in time to

different historical nodes, and co-locating segments from different

data sources. To optimally distribute and balance segments among

the cluster, we developed a cost-based optimization procedure that

takes into account the segment data source, recency, and size. The

exact details of the algorithm are beyond the scope of this paper and

may be discussed in future literature.

3.4.3 Replication
Coordinator nodes may tell different historical nodes to load copies

of the same segment. The number of replicates in each tier of the

historical compute cluster is fully configurable. Setups that require

high levels of fault tolerance can be configured to have a high num-

ber of replicas. Replicated segments are treated the same as the

originals and follow the same load distribution algorithm. By repli-

cating segments, single historical node failures are transparent in the

Druid cluster. We use this property for software upgrades. We can

seamlessly take a historical node offline, update it, bring it back up,

and repeat the process for every historical node in a cluster. Over the

last two years, we have never taken downtime in our Druid cluster

for software upgrades.

3.4.4 Availability
Druid coordinator nodes have two external dependencies: Zookeeper

and MySQL. Coordinator nodes rely on Zookeeper to determine

what historical nodes already exist in the cluster. If Zookeeper be-

comes unavailable, the coordinator will no longer be able to send

instructions to assign, balance, and drop segments. However, these

operations do not affect data availability at all.

The design principle for responding to MySQL and Zookeeper fail-

ures is the same: if an external dependency responsible for coordi-

nation fails, the clustermaintains the status quo. Druid usesMySQL

to store operational management information and segment meta-

data information about what segments should exist in the cluster. If

MySQL goes down, this information becomes unavailable to coor-

dinator nodes. However, this does not mean data itself is unavail-

able. If coordinator nodes cannot communicate to MySQL, they

will cease to assign new segments and drop outdated ones. Broker,

historical, and real-time nodes are still queryable during MySQL

outages.

4. STORAGE FORMAT
Data tables in Druid (called data sources) are collections of times-

tamped events and partitioned into a set of segments, where each

segment is typically 5–10 million rows. Formally, we define a seg-

ment as a collection of rows of data that span some period in time.

Figure 6: Broker nodes cache per segment results. Every Druid query is mapped to a set of segments. Queries often combine cached

segment results with those that need to be computed on historical and real-time nodes.

Segments represent the fundamental storage unit in Druid and repli-

cation and distribution are done at a segment level.

Druid always requires a timestamp column as a method of simplify-

ing data distribution policies, data retention policies, and first-level

query pruning. Druid partitions its data sources into well-defined

time intervals, typically an hour or a day, and may further partition

on values from other columns to achieve the desired segment size.

The time granularity to partition segments is a function of data vol-

ume and time range. A data set with timestamps spread over a year

is better partitioned by day, and a data set with timestamps spread

over a day is better partitioned by hour.

Segments are uniquely identified by a data source identifer, the time

interval of the data, and a version string that increases whenever a

new segment is created. The version string indicates the freshness

of segment data; segments with later versions have newer views of

data (over some time range) than segmentswith older versions. This

segment metadata is used by the system for concurrency control;

read operations always access data in a particular time range from

the segments with the latest version identifiers for that time range.

Druid segments are stored in a column orientation. Given that Druid

is best used for aggregating event streams (all data going into Druid

must have a timestamp), the advantages storing aggregate informa-

tion as columns rather than rows are well documented [1]. Column

storage allows for more efficient CPU usage as only what is needed

is actually loaded and scanned. In a row oriented data store, all

columns associated with a row must be scanned as part of an ag-

gregation. The additional scan time can introduce signficant per-

formance degradations [1].

Druid has multiple column types to represent various data formats.
Depending on the column type, different compression methods are
used to reduce the cost of storing a column in memory and on disk.
In the example given in Table 2, the page, user, gender, and city
columns only contain strings. Storing strings directly is unneces-
sarily costly and string columns can be dictionary encoded instead.
Dictionary encoding is a common method to compress data and has
been used in other data stores such as PowerDrill [17]. In the exam-
ple in Table 2, we can map each page to an unique integer identifier.

Justin Bieber -> 0
Ke$ha -> 1

This mapping allows us to represent the page column as an integer
array where the array indices correspond to the rows of the original
data set. For the page column, we can represent the unique pages
as follows:

[0, 0, 1, 1]

The resulting integer array lends itself very well to compression

methods. Generic compression algorithms on top of encodings are

extremely common in column-stores. Druid uses the LZF [24] com-

pression algorithm.

Similar compression methods can be applied to numeric columns.
For example, the characters added and characters removed columns
in Table 2 can also be expressed as individual arrays.

Characters Added -> [1800, 2912, 1953, 3194]
Characters Removed -> [25, 42, 17, 170]

In this case, we compress the raw values as opposed to their dictio-

nary representations.

4.1 Indices for Filtering Data
In many real world OLAP workflows, queries are issued for the

aggregated results of some set of metrics where some set of di-

mension specifications are met. An example query is: ”How many

Wikipedia edits were done by users in San Francisco who are also

male?”. This query is filtering the Wikipedia data set in Table 2

based on a Boolean expression of dimension values. In many real

world data sets, dimension columns contain strings andmetric columns

contain numeric values. Druid creates additional lookup indices for

string columns such that only those rows that pertain to a particular

query filter are ever scanned.

Let us consider the page column in Table 2. For each unique page
in Table 2, we can form some representation indicating in which
table rows a particular page is seen. We can store this information
in a binary array where the array indices represent our rows. If a
particular page is seen in a certain row, that array index is marked
as 1. For example:

Justin Bieber -> rows [0, 1] -> [1][1][0][0]
Ke$ha -> rows [2, 3] -> [0][0][1][1]

Justin Bieber is seen in rows 0 and 1. This mapping of column
values to row indices forms an inverted index [39]. To know which
rows contain Justin Bieber or Ke$ha, we can OR together the
two arrays.

[0][1][0][1] OR [1][0][1][0] = [1][1][1][1]

This approach of performing Boolean operations on large bitmap

sets is commonly used in search engines. Bitmap indices for OLAP

workloads is described in detail in [32]. Bitmap compression algo-

rithms are a well-defined area of research [2, 44, 42] and often uti-

lize run-length encoding. Druid opted to use the Concise algorithm

[10] as it can outperformWAH by reducing compressed bitmap size

by up to 50%. Figure 7 illustrates the number of bytes using Con-

cise compression versus using an integer array. The results were

generated on a cc2.8xlarge system with a single thread, 2G heap,

Integer array size (bytes)

1e+04

1e+06

1e+02 1e+05 1e+08
Cardinality

C
on

ci
se

 c
om

pr
es

se
d

si
ze

 (
by

te
s)

sorted

sorted

unsorted

Figure 7: Integer array size versus Concise set size.

512m young gen, and a forced GC between each run. The data set is

a single day’s worth of data collected from the Twitter garden hose

[41] data stream. The data set contains 2,272,295 rows and 12 di-

mensions of varying cardinality. As an additional comparison, we

also resorted the data set rows to maximize compression.

In the unsorted case, the total Concise size was 53,451,144 bytes

and the total integer array size was 127,248,520 bytes. Overall,

Concise compressed sets are about 42% smaller than integer ar-

rays. In the sorted case, the total Concise compressed size was

43,832,884 bytes and the total integer array size was 127,248,520

bytes. What is interesting to note is that after sorting, global com-

pression only increased minimally.

4.2 Storage Engine
Druid’s persistence components allows for different storage engines

to be plugged in, similar to Dynamo [12]. These storage engines

may store data in an entirely in-memory structure such as the JVM

heap or in memory-mapped structures. The ability to swap storage

engines allows for Druid to be configured depending on a particular

application’s specifications. An in-memory storage engine may be

operationally more expensive than a memory-mapped storage en-

gine but could be a better alternative if performance is critical. By

default, a memory-mapped storage engine is used.

When using a memory-mapped storage engine, Druid relies on the

operating system to page segments in and out of memory. Given

that segments can only be scanned if they are loaded in memory,

a memory-mapped storage engine allows recent segments to retain

in memory whereas segments that are never queried are paged out.

The main drawback with using the memory-mapped storage engine

is when a query requires more segments to be paged into memory

than a given node has capacity for. In this case, query performance

will suffer from the cost of paging segments in and out of memory.

5. QUERY API
Druid has its own query language and accepts queries as POST re-

quests. Broker, historical, and real-time nodes all share the same

query API.

The body of the POST request is a JSON object containing key-

value pairs specifying various query parameters. A typical query

will contain the data source name, the granularity of the result data,

time range of interest, the type of request, and the metrics to ag-

gregate over. The result will also be a JSON object containing the

aggregated metrics over the time period.

Most query types will also support a filter set. A filter set is a

Boolean expression of dimension name and value pairs. Any num-

ber and combination of dimensions and values may be specified.

When a filter set is provided, only the subset of the data that per-

tains to the filter set will be scanned. The ability to handle complex

nested filter sets is what enables Druid to drill into data at any depth.

The exact query syntax depends on the query type and the infor-
mation requested. A sample count query over a week of data is as
follows:

{
"queryType" : "timeseries",
"dataSource" : "wikipedia",
"intervals" : "2013-01-01/2013-01-08",
"filter" : {

"type" : "selector",
"dimension" : "page",
"value" : "Ke$ha"

},
"granularity" : "day",
"aggregations" : [{"type":"count", "name":"rows"}]

}

The query shown above will return a count of the number of rows in
the Wikipedia datasource from 2013-01-01 to 2013-01-08, filtered
for only those rowswhere the value of the ”page” dimension is equal
to ”Ke$ha”. The results will be bucketed by day and will be a JSON
array of the following form:

[{
"timestamp": "2012-01-01T00:00:00.000Z",
"result": {"rows":393298}

},
{

"timestamp": "2012-01-02T00:00:00.000Z",
"result": {"rows":382932}

},
...
{

"timestamp": "2012-01-07T00:00:00.000Z",
"result": {"rows": 1337}

}]

Druid supports many types of aggregations including double sums,

long sums, minimums, maximums, and complex aggregations such

as cardinality estimation and approximate quantile estimation. The

results of aggregations can be combined in mathematical expres-

sions to form other aggregations. It is beyond the scope of this paper

to fully describe the query API but more information can be found

online3.

As of this writing, a join query for Druid is not yet implemented.

This has been a function of engineering resource allocation deci-

sions and use case more than a decision driven by technical merit.

Indeed, Druid’s storage format would allow for the implementation

of joins (there is no loss of fidelity for columns included as dimen-

sions) and the implementation of them has been a conversation that

we have every few months. To date, we have made the choice that

the implementation cost is not worth the investment for our organi-

zation. The reasons for this decision are generally two-fold.

1. Scaling join queries has been, in our professional experience,

a constant bottleneck of working with distributed databases.

3http://druid.io/docs/latest/Querying.html

http://druid.io/docs/latest/Querying.html

Data Source Dimensions Metrics

a 25 21

b 30 26

c 71 35

d 60 19

e 29 8

f 30 16

g 26 18

h 78 14

Table 2: Characteristics of production data sources.

2. The incremental gains in functionality are perceived to be

of less value than the anticipated problems with managing

highly concurrent, join-heavy workloads.

A join query is essentially the merging of two or more streams of

data based on a shared set of keys. The primary high-level strategies

for join queries the authors are aware of are a hash-based strategy

or a sorted-merge strategy. The hash-based strategy requires that

all but one data set be available as something that looks like a hash

table, a lookup operation is then performed on this hash table for

every row in the ”primary” stream. The sorted-merge strategy as-

sumes that each stream is sorted by the join key and thus allows

for the incremental joining of the streams. Each of these strate-

gies, however, requires the materialization of some number of the

streams either in sorted order or in a hash table form.

When all sides of the join are significantly large tables (> 1 bil-

lion records), materializing the pre-join streams requires complex

distributed memory management. The complexity of the memory

management is only amplified by the fact that we are targeting highly

concurrent, multitenant workloads. This is, as far as the authors are

aware, an active academic research problem that we would be more

than willing to engage with the academic community to help resolv-

ing in a scalable manner.

6. PERFORMANCE
Druid runs in production at several organizations, and to demon-

strate its performance, we have chosen to share some real world

numbers for the main production cluster running at Metamarkets in

early 2014. For comparison with other databases we also include

results from synthetic workloads on TPC-H data.

6.1 Query Performance in Production
Druid query performance can vary signficantly depending on the

query being issued. For example, sorting the values of a high cardi-

nality dimension based on a given metric is much more expensive

than a simple count over a time range. To showcase the average

query latencies in a production Druid cluster, we selected 8 of our

most queried data sources, described in Table 6.1.

Approximately 30% of the queries are standard aggregates involv-

ing different types of metrics and filters, 60% of queries are ordered

group bys over one or more dimensions with aggregates, and 10%

of queries are search queries and metadata retrieval queries. The

number of columns scanned in aggregate queries roughly follows

an exponential distribution. Queries involving a single column are

very frequent, and queries involving all columns are very rare.

0.0

0.5

1.0

Feb 03 Feb 10 Feb 17 Feb 24
time

qu
er

y
tim

e
(s

)

datasource

a

b

c

d

e

f

g

h

Mean query latency

0.0

0.5

1.0

1.5

0

1

2

3

4

0

5

10

15

20

90%
ile

95%
ile

99%
ile

Feb 03 Feb 10 Feb 17 Feb 24
time

qu
er

y
tim

e
(s

ec
on

ds
)

datasource

a

b

c

d

e

f

g

h

Query latency percentiles

Figure 8: Query latencies of production data sources.

A few notes about our results:

• The results are from a ”hot” tier in our production cluster. We

run several tiers of varying performance in production.

• There is approximately 10.5TB of RAM available in the ”hot”

tier and approximately 10TB of segments loaded (including repli-

cation). Collectively, there are about 50 billion Druid rows in this

tier. Results for every data source are not shown.

• The hot tier uses Xeon E5-2670 processors and consists of 1302

processing threads and 672 total cores (hyperthreaded).

• A memory-mapped storage engine was used (the machine was

configured to memory map the data instead of loading it into the

Java heap.)

Query latencies are shown in Figure 8 and the queries per minute

is shown in Figure 9. Across all the various data sources, aver-

age query latency is approximately 550 milliseconds, with 90% of

queries returning in less than 1 second, 95% in under 2 seconds,

and 99% of queries taking less than 10 seconds to complete. Occa-

sionally we observe spikes in latency, as observed on February 19,

in which case network issues on the cache nodes were compounded

by very high query load on one of our largest datasources.

6.2 Query Benchmarks on TPC-H Data
We also present Druid benchmarks on TPC-H data. Most TPC-H

queries do not directly apply to Druid, so we selected queries more

typical of Druid’s workload to demonstrate query performance. As

0

500

1000

1500

Feb 03 Feb 10 Feb 17 Feb 24
time

qu
er

ie
s

/ m
in

ut
e

datasource

a

b

c

d

e

f

g

h

Queries per minute

Figure 9: Queries per minute of production data sources.

0

1

2

3

4

co
un

t_
st

ar
_i

nt
er

va
l

su
m

_a
ll

su
m

_a
ll_

fil
te

r

su
m

_a
ll_

ye
ar

su
m

_p
ric

e

to
p_

10
0_

co
m

m
itd

at
e

to
p_

10
0_

pa
rt

s

to
p_

10
0_

pa
rt

s_
de

ta
ils

to
p_

10
0_

pa
rt

s_
fil

te
r

Query

T
im

e
(s

ec
on

ds
)

engine

Druid

MySQL

Median query time (100 runs) ... 1GB data ... single node

Figure 10: Druid & MySQL benchmarks – 1GB TPC-H data.

a comparison, we also provide the results of the same queries us-

ing MySQL using the MyISAM engine (InnoDB was slower in our

experiments).

We selected MySQL to benchmark against because of its universal

popularity. We choose not to select another open source column

store because we were not confident we could correctly tune it for

optimal performance.

Our Druid setup usedAmazon EC2 m3.2xlarge (Intel(R) Xeon(R)
CPU E5-2680 v2 @ 2.80GHz) instances for historical nodes and

c3.2xlarge (Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz) in-

stances for broker nodes. Our MySQL setup was an Amazon RDS

instance that ran on the same m3.2xlarge instance type.

The results for the 1 GB TPC-H data set are shown in Figure 10

and the results of the 100 GB data set are shown in Figure 11.

We benchmarked Druid’s scan rate at 53,539,211 rows/second/core

for select count(*) equivalent query over a given time interval
and 36,246,530 rows/second/core for a select sum(float) type
query.

Finally, we present our results of scaling Druid to meet increasing

data volumes with the TPC-H 100 GB data set. We observe that

when we increased the number of cores from 8 to 48, not all types of

queries achieve linear scaling, but the simpler aggregation queries

do, as shown in Figure 12.

aggregation top−n

0

200

400

600

0

2500

5000

7500

10000

12500

co
un

t_
st

ar
_i

nt
er

va
l

su
m

_a
ll

su
m

_a
ll_

fil
te

r

su
m

_a
ll_

ye
ar

su
m

_p
ric

e

to
p_

10
0_

co
m

m
itd

at
e

to
p_

10
0_

pa
rt

s

to
p_

10
0_

pa
rt

s_
de

ta
ils

to
p_

10
0_

pa
rt

s_
fil

te
r

Query

T
im

e
(s

ec
on

ds
)

engine

Druid

MySQL

Median Query Time (5 runs) ... 100GB data ... single node

Figure 11: Druid&MySQLbenchmarks – 100GBTPC-H data.

Data Source Dimensions Metrics Peak events/s

s 7 2 28334.60

t 10 7 68808.70

u 5 1 49933.93

v 30 10 22240.45

w 35 14 135763.17

x 28 6 46525.85

y 33 24 162462.41

z 33 24 95747.74

Table 3: Ingestion characteristics of various data sources.

The increase in speed of a parallel computing system is often lim-

ited by the time needed for the sequential operations of the system.

In this case, queries requiring a substantial amount of work at the

broker level do not parallelize as well.

6.3 Data Ingestion Performance
To showcase Druid’s data ingestion latency, we selected several

production datasources of varying dimensions, metrics, and event

volumes. Our production ingestion setup consists of 6 nodes, to-

talling 360GB of RAM and 96 cores (12 x Intel Xeon E5-2670).

Note that in this setup, several other data sources were being in-

gested and many other Druid related ingestion tasks were running

concurrently on those machines.

Druid’s data ingestion latency is heavily dependent on the complex-

ity of the data set being ingested. The data complexity is determined

by the number of dimensions in each event, the number of metrics

in each event, and the types of aggregations we want to perform

on those metrics. With the most basic data set (one that only has a

timestamp column), our setup can ingest data at a rate of 800,000

events/second/core, which is really just a measurement of how fast

we can deserialize events. Real world data sets are never this sim-

ple. Table 6.3 shows a selection of data sources and their chracter-

istics.

We can see that, based on the descriptions in Table 6.3, latencies

vary significantly and the ingestion latency is not always a factor of

the number of dimensions andmetrics. We see some lower latencies

on simple data sets because that was the rate that the data producer

was delivering data. The results are shown in Figure 13.

Figure 12: Druid scaling benchmarks – 100GB TPC-H data.

0

50,000

100,000

150,000

200,000

250,000

Dec 15 Jan 01 Jan 15 Feb 01 Feb 15 Mar 01
time

ev
en

ts
 /

s

datasource

s

t

u

v

w

x

y

z

Events per second ... 24h moving average

Figure 13: Combined cluster ingestion rates.

We define throughput as the number of events a real-time node can

ingest and also make queryable. If too many events are sent to the

real-time node, those events are blocked until the real-time node has

capacity to accept them. The peak ingestion latency wemeasured in

production was 22914.43 events/second/core on a datasource with

30 dimensions and 19 metrics, running an Amazon cc2.8xlarge
instance.

The latencymeasurements we presented are sufficient to address the

our stated problems of interactivity. We would prefer the variability

in the latencies to be less. It is still very possible to possible to

decrease latencies by adding additional hardware, but we have not

chosen to do so because infrastructure cost is still a consideration

to us.

7. DRUID IN PRODUCTION
Over the last few years, we have gained tremendous knowledge

about handling production workloads with Druid and have made

a couple of interesting observations.

Query Patterns. Druid is often used to explore data and gener-

ate reports on data. In the explore use case, the number of queries

issued by a single user is much higher than in the reporting use case.

Exploratory queries often involve progressively adding filters for

the same time range to narrow down results. Users tend to explore

short time intervals of recent data. In the generate report use case,

users query for much longer data intervals, but users also already

have the queries they want to issue in mind.

Multitenancy. Expensive concurrent queries can be problematic

in a multitenant environment. Queries for large datasources may

end up hitting every historical node in a cluster and consume all

cluster resources. Smaller, cheaper queries may be blocked from

executing in such cases. We introduced query prioritization to ad-

dress these issues. Each historical node is able to prioritize which

segments it needs to scan. Proper query planning is critical for pro-

duction workloads. Thankfully, queries for a significant amount of

data tend to be for reporting use cases, and users are not expecting

the same level of interactivity as when they are querying to explore

data.

Node failures. Single node failures are common in distributed

environments, but many nodes failing at once are not. If historical

nodes completely fail and do not recover, their segments need to

reassigned, which means we need excess cluster capacity to load

this data. The amount of additional capacity to have at any time

contributes to the cost of running a cluster. From our experiences,

it is extremely rare to see more than 2 nodes completely fail at once

and hence, we leave enough capacity in our cluster to completely

reassign the data from 2 historical nodes.

Data Center Outages. Complete cluster failures are possible,

but extremely rare. If Druid is deployed only in a single data center,

it is possible for the entire data center to fail. In such cases, new

machines need to be provisioned. As long as deep storage is still

available, cluster recovery time is network bound as historical nodes

simply need to redownload every segment from deep storage. We

have experienced such failures in the past, and the recovery time

was around several hours in the AWS ecosystem on several TBs of

data.

7.1 Operational Monitoring
Proper monitoring is critical to run a large scale distributed cluster.

EachDruid node is designed to periodically emit a set of operational

metrics. These metrics may include system level data such as CPU

usage, available memory, and disk capacity, JVM statistics such as

garbage collection time, and heap usage, or node specific metrics

such as segment scan time, cache hit rates, and data ingestion laten-

cies. Druid also emits per query metrics.

We emit metrics from a production Druid cluster and load them into

a dedicated metrics Druid cluster. The metrics Druid cluster is used

to explore the performance and stability of the production cluster.

This dedicated metrics cluster has allowed us to find numerous pro-

duction problems, such as gradual query speed degregations, less

than optimally tuned hardware, and various other system bottle-

necks. We also use a metrics cluster to analyze what queries are

made in production and what users are most interested in.

7.2 Pairing Druid with a Stream Processor
At the time of writing, Druid can only understand fully denormal-

ized data streams. In order to provide full business logic in produc-

tion, Druid can be paired with a stream processor such as Apache

Storm [27].

A Storm topology consumes events from a data stream, retains only

those that are “on-time”, and applies any relevant business logic.

This could range from simple transformations, such as id to name

lookups, up to complex operations such as multi-stream joins. The

Storm topology forwards the processed event stream to Druid in

real-time. Storm handles the streaming data processing work, and

Druid is used for responding to queries for both real-time and his-

torical data.

7.3 Multiple Data Center Distribution
Large scale production outages may not only affect single nodes,

but entire data centers as well. The tier configuration in Druid co-

ordinator nodes allow for segments to be replicated across multiple

tiers. Hence, segments can be exactly replicated across historical

nodes in multiple data centers. Similarily, query preference can be

assigned to different tiers. It is possible to have nodes in one data

center act as a primary cluster (and recieve all queries) and have a

redundant cluster in another data center. Such a setup may be de-

sired if one data center is situated much closer to users.

8. RELATED WORK
Cattell [6] maintains a great summary about existing Scalable SQL

and NoSQL data stores. Hu [18] contributed another great sum-

mary for streaming databases. Druid feature-wise sits somewhere

betweenGoogle’s Dremel [28] and PowerDrill [17]. Druid hasmost

of the features implemented in Dremel (Dremel handles arbitrary

nested data structures while Druid only allows for a single level of

array-based nesting) and many of the interesting compression algo-

rithms mentioned in PowerDrill.

Although Druid builds on many of the same principles as other dis-

tributed columnar data stores [15], many of these data stores are

designed to be more generic key-value stores [23] and do not sup-

port computation directly in the storage layer. There are also other

data stores designed for some of the same of the data warehousing

issues that Druid is meant to solve. These systems include include

in-memory databases such as SAP’s HANA [14] and VoltDB [43].

These data stores lack Druid’s low latency ingestion characteristics.

Druid also has native analytical features baked in, similar to [34],

however, Druid allows system wide rolling software updates with

no downtime.

Druid is similiar to [38, 8] in that it has two subsystems, a read-

optimized subsystem in the historical nodes and a write-optimized

subsystem in real-time nodes. Real-time nodes are designed to in-

gest a high volume of append heavy data, and do not support data

updates. Unlike the two aforementioned systems, Druid is meant

for OLAP transactions and not OLTP transactions.

Druid’s low latency data ingestion features share some similarities

with Trident/Storm [27] and Streaming Spark [45], however, both

systems are focused on stream processing whereas Druid is focused

on ingestion and aggregation. Stream processors are great comple-

ments to Druid as a means of pre-processing the data before the data

enters Druid.

There are a class of systems that specialize in queries on top of clus-

ter computing frameworks. Shark [13] is such a system for queries

on top of Spark, and Cloudera’s Impala [9] is another system fo-

cused on optimizing query performance on top of HDFS. Druid

historical nodes download data locally and only work with native

Druid indexes. We believe this setup allows for faster query laten-

cies.

Druid leverages a unique combination of algorithms in its archi-

tecture. Although we believe no other data store has the same set

of functionality as Druid, some of Druid’s optimization techniques

such as using inverted indices to perform fast filters are also used in

other data stores [26].

9. CONCLUSIONS
In this paper, we presented Druid, a distributed, column-oriented,

real-time analytical data store. Druid is designed to power high

performance applications and is optimized for low query latencies.

Druid supports streaming data ingestion and is fault-tolerant. We

discussed how Druid benchmarks and summarized key architecture

aspects such as the storage format, query language, and general ex-

ecution.

10. ACKNOWLEDGEMENTS
Druid could not have been built without the help of many great en-

gineers at Metamarkets and in the community. We want to thank

everyone that has contributed to the Druid codebase for their in-

valuable support.

11. REFERENCES
[1] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores

vs. row-stores: How different are they really? In Proceedings

of the 2008 ACM SIGMOD international conference on

Management of data, pages 967–980. ACM, 2008.

[2] G. Antoshenkov. Byte-aligned bitmap compression. In Data

Compression Conference, 1995. DCC’95. Proceedings, page

476. IEEE, 1995.

[3] Apache. Apache solr.

http://lucene.apache.org/solr/, February 2013.
[4] S. Banon. Elasticsearch.

http://www.elasticseach.com/, July 2013.
[5] C. Bear, A. Lamb, and N. Tran. The vertica database: Sql

rdbms for managing big data. In Proceedings of the 2012

workshop on Management of big data systems, pages 37–38.

ACM, 2012.

[6] R. Cattell. Scalable sql and nosql data stores. ACM SIGMOD

Record, 39(4):12–27, 2011.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber. Bigtable: A distributed storage system for structured

data. ACM Transactions on Computer Systems (TOCS),

26(2):4, 2008.

[8] J. Cipar, G. Ganger, K. Keeton, C. B. Morrey III, C. A.

Soules, and A. Veitch. Lazybase: trading freshness for

performance in a scalable database. In Proceedings of the 7th

ACM european conference on Computer Systems, pages

169–182. ACM, 2012.

[9] Cloudera impala. http://blog.cloudera.com/blog,
March 2013.

[10] A. Colantonio and R. Di Pietro. Concise: Compressed

‘n’composable integer set. Information Processing Letters,

110(16):644–650, 2010.

http://lucene.apache.org/solr/
http://www.elasticseach.com/
http://blog.cloudera.com/blog

[11] J. Dean and S. Ghemawat. Mapreduce: simplified data

processing on large clusters. Communications of the ACM,

51(1):107–113, 2008.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: amazon’s highly available

key-value store. In ACM SIGOPS Operating Systems

Review, volume 41, pages 205–220. ACM, 2007.

[13] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin,

S. Shenker, and I. Stoica. Shark: fast data analysis using

coarse-grained distributed memory. In Proceedings of the

2012 international conference on Management of Data,

pages 689–692. ACM, 2012.

[14] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and

W. Lehner. Sap hana database: data management for modern

business applications. ACM Sigmod Record, 40(4):45–51,

2012.

[15] B. Fink. Distributed computation on dynamo-style

distributed storage: riak pipe. In Proceedings of the eleventh

ACM SIGPLAN workshop on Erlang workshop, pages

43–50. ACM, 2012.

[16] B. Fitzpatrick. Distributed caching with memcached. Linux

journal, (124):72–74, 2004.

[17] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, and

M. Nunkesser. Processing a trillion cells per mouse click.

Proceedings of the VLDB Endowment, 5(11):1436–1446,

2012.

[18] B. Hu. Stream database survey. 2011.

[19] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:

Wait-free coordination for internet-scale systems. In USENIX

ATC, volume 10, 2010.

[20] C. S. Kim. Lrfu: A spectrum of policies that subsumes the

least recently used and least frequently used policies. IEEE

Transactions on Computers, 50(12), 2001.

[21] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed

messaging system for log processing. In Proceedings of 6th

International Workshop on Networking Meets Databases

(NetDB), Athens, Greece, 2011.

[22] T. Lachev. Applied Microsoft Analysis Services 2005: And

Microsoft Business Intelligence Platform. Prologika Press,

2005.

[23] A. Lakshman and P. Malik. Cassandra—a decentralized

structured storage system. Operating systems review,

44(2):35, 2010.

[24] Liblzf. http://freecode.com/projects/liblzf, March

2013.

[25] LinkedIn. Senseidb. http://www.senseidb.com/, July
2013.

[26] R. MacNicol and B. French. Sybase iq multiplex-designed

for analytics. In Proceedings of the Thirtieth international

conference on Very large data bases-Volume 30, pages

1227–1230. VLDB Endowment, 2004.

[27] N. Marz. Storm: Distributed and fault-tolerant realtime

computation. http://storm-project.net/, February
2013.

[28] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,

M. Tolton, and T. Vassilakis. Dremel: interactive analysis of

web-scale datasets. Proceedings of the VLDB Endowment,

3(1-2):330–339, 2010.

[29] D. Miner. Unified analytics platform for big data. In

Proceedings of the WICSA/ECSA 2012 Companion Volume,
pages 176–176. ACM, 2012.

[30] K. Oehler, J. Gruenes, C. Ilacqua, and M. Perez. IBM Cognos

TM1: The Official Guide. McGraw-Hill, 2012.

[31] E. J. O’neil, P. E. O’neil, and G. Weikum. The lru-k page

replacement algorithm for database disk buffering. In ACM

SIGMOD Record, volume 22, pages 297–306. ACM, 1993.

[32] P. O’Neil and D. Quass. Improved query performance with

variant indexes. In ACM Sigmod Record, volume 26, pages

38–49. ACM, 1997.

[33] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The

log-structured merge-tree (lsm-tree). Acta Informatica,

33(4):351–385, 1996.

[34] Paraccel analytic database.

http://www.paraccel.com/resources/Datasheets/
ParAccel-Core-Analytic-Database.pdf, March 2013.

[35] M. Schrader, D. Vlamis, M. Nader, C. Claterbos, D. Collins,

M. Campbell, and F. Conrad. Oracle Essbase & Oracle

OLAP. McGraw-Hill, Inc., 2009.

[36] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The

hadoop distributed file system. In Mass Storage Systems and

Technologies (MSST), 2010 IEEE 26th Symposium on, pages

1–10. IEEE, 2010.

[37] M. Singh and B. Leonhardi. Introduction to the ibm netezza

warehouse appliance. In Proceedings of the 2011 Conference

of the Center for Advanced Studies on Collaborative

Research, pages 385–386. IBM Corp., 2011.

[38] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,

M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,

E. O’Neil, et al. C-store: a column-oriented dbms. In

Proceedings of the 31st international conference on Very

large data bases, pages 553–564. VLDB Endowment, 2005.

[39] A. Tomasic and H. Garcia-Molina. Performance of inverted

indices in shared-nothing distributed text document

information retrieval systems. In Parallel and Distributed

Information Systems, 1993., Proceedings of the Second

International Conference on, pages 8–17. IEEE, 1993.

[40] E. Tschetter. Introducing druid: Real-time analytics at a

billion rows per second. http://druid.io/blog/2011/
04/30/introducing-druid.html, April 2011.

[41] Twitter public streams. https://dev.twitter.com/
docs/streaming-apis/streams/public, March 2013.

[42] S. J. van Schaik and O. de Moor. A memory efficient

reachability data structure through bit vector compression. In

Proceedings of the 2011 international conference on

Management of data, pages 913–924. ACM, 2011.

[43] L. VoltDB. Voltdb technical overview.

https://voltdb.com/, 2010.
[44] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap

indices with efficient compression. ACM Transactions on

Database Systems (TODS), 31(1):1–38, 2006.

[45] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.

Discretized streams: an efficient and fault-tolerant model for

stream processing on large clusters. In Proceedings of the 4th

USENIX conference on Hot Topics in Cloud Computing,

pages 10–10. USENIX Association, 2012.

http://freecode.com/projects/liblzf
http://www.senseidb.com/
http://storm-project.net/
http://www.paraccel.com/resources/Datasheets/ParAccel-Core-Analytic-Database.pdf
http://www.paraccel.com/resources/Datasheets/ParAccel-Core-Analytic-Database.pdf
http://druid.io/blog/2011/04/30/introducing-druid.html
http://druid.io/blog/2011/04/30/introducing-druid.html
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/streams/public
https://voltdb.com/

	Introduction
	Problem Definition
	Architecture
	Real-time Nodes
	Availability and Scalability

	Historical Nodes
	Tiers
	Availability

	Broker Nodes
	Caching
	Availability

	Coordinator Nodes
	Rules
	Load Balancing
	Replication
	Availability

	Storage Format
	Indices for Filtering Data
	Storage Engine

	Query API
	Performance
	Query Performance in Production
	Query Benchmarks on TPC-H Data
	Data Ingestion Performance

	Druid in Production
	Operational Monitoring
	Pairing Druid with a Stream Processor
	Multiple Data Center Distribution

	Related Work
	Conclusions
	Acknowledgements
	References

