
Druid: A Real-time Analytical Data Store

Fangjin Yang, Eric Tschetter, Gian Merlino, Nelson Ray, Xavier Léauté, Deep Ganguli,
Himadri Singh

{fangjin, cheddar, gian, nelson, xavier, deep, himadri}@metamarkets.com

ABSTRACT
Druid is an open source1 data store designed for real-time exploratory

analytics on large data sets. The system combines a column-oriented

storage layout, a distributed, shared-nothing architecture, and an

advanced indexing structure to allow for the arbitrary exploration

of billion-row tables with sub-second latencies. In this paper, we

describe Druid’s architecture, and detail how it supports fast aggre-

gations, flexible filters, and low latency data ingestion.

1. INTRODUCTION
In recent years, the proliferation of internet technology has created a

surge in machine-generated events. Individually, these events con-

tain minimal useful information and are of low value. Given the

time and resources required to extract meaning from large collec-

tions of events, many companies were willing to discard this data

instead. Although infrastructure has been built handle event based

data (e.g. IBM’s Netezza[32], HP’s Vertica[6], and EMC’s Green-

plum[28]), they are largely sold at high price points and are only

targeted towards those companies who can afford the offerings.

A few years ago, Google introducedMapReduce [11] as their mech-

anism of leveraging commodity hardware to index the internet and

analyze logs. TheHadoop [31] project soon followed andwas largely

patterned after the insights that came out of the original MapRe-

duce paper. Hadoop is currently deployed in many organizations

to store and analyze large amounts of log data. Hadoop has con-

tributed much to helping companies convert their low-value event

streams into high-value aggregates for a variety of applications such

as business intelligence and A-B testing.

As with a lot of great systems, Hadoop has opened our eyes to a new

space of problems. Specifically, Hadoop excels at storing and pro-

viding access to large amounts of data, however, it does not make

any performance guarantees around how quickly that data can be

accessed. Furthermore, although Hadoop is a highly available sys-

tem, performance degrades under heavy concurrent load. Lastly,

while Hadoop works well for storing data, it is not optimized for

ingesting data and making that data immediately readable.

Early on in the development of the Metamarkets product, we ran

into each of these issues and came to the realization that Hadoop is

a great back-office, batch processing, and data warehousing system.

However, as a company that has product-level guarantees around

query performance and data availability in a highly concurrent en-

vironment (1000+ users), Hadoop wasn’t going to meet our needs.

We explored different solutions in the space, and after trying both

1https://github.com/metamx/druid

Relational Database Management Systems and NoSQL architec-

tures, we came to the conclusion that there was nothing in the open

source world that could be fully leveraged for our requirements.

We ended up creating Druid, an open-source, distributed, column-

oriented, realtime analytical data store. In many ways, Druid shares

similarities with other interactive query systems [27], main-memory

databases [14], and widely-known distributed data stores such as

BigTable [8], Dynamo [12], and Cassandra [22]. The distribution

and query model also borrow ideas from current generation search

infrastructure [24, 4, 5].

This paper describes the architecture of Druid, explores the various

design decisions made in creating an always-on production system

that powers a hosted service, and attempts to help inform anyone

who faces a similar problem about a potential method of solving it.

Druid is deployed in production at several technology companies2.

The structure of the paper is as follows: we first describe the prob-

lem in Section 2. Next, we detail system architecture from the point

of view of how data flows through the system in Section 3. We then

discuss how and why data gets converted into a binary format in

Section 4. We briefly describe the query API in Section 5. Lastly,

we leave off with some benchmarks in Section 6, related work in

Section 7 and conclusions are Section 8.

2. PROBLEM DEFINITION
Druid was originally designed to solve problems around ingesting

and exploring large quantities of transactional events (log data).

This form of timeseries data is commonly found in OLAP work-

flows and the nature of the data tends to be very append heavy. For

example, consider the data shown in Table 1. Table 1 contains data

for edits that have occured on Wikipedia. Each time a user edits

a page in Wikipedia, an event is generated that contains metadata

about the edit. This metadata is comprised of 3 distinct compo-

nents. First, there is a timestamp column indicating when the edit

was made. Next, there are a set dimension columns indicating var-

ious attributes about the edit such as the page that was edited, the

user who made the edit, and the location of the user. Finally, there

are a set of metric columns that contain values (usually numeric) to

aggregate over, such as the number of characters added or removed

in an edit.

Our goal is to rapidly compute drill-downs and aggregates over this

data. Wewant to answer questions like “Howmany edits weremade

on the page Justin Bieber frommales in San Francisco?” and “What

is the average number of characters that were added by people from

2http://druid.io/druid.html

https://github.com/metamx/druid
http://druid.io/druid.html

Table 1: Sample Druid data for edits that have occurred on Wikipedia.

Timestamp Page Username Gender City Characters Added Characters Removed

2011-01-01T01:00:00Z Justin Bieber Boxer Male San Francisco 1800 25

2011-01-01T01:00:00Z Justin Bieber Reach Male Waterloo 2912 42

2011-01-01T02:00:00Z Ke$ha Helz Male Calgary 1953 17

2011-01-01T02:00:00Z Ke$ha Xeno Male Taiyuan 3194 170

Calgary over the span of a month?”. We also want queries over

any arbitrary combination of dimensions to return with sub-second

latencies.

The need for Druid was faciliated by the fact that existing open

source Relational DatabaseManagement Systems andNoSQLkey/value

stores were unable to provide a low latency data ingestion and query

platform for interactive applications [35]. In the early days ofMetamarkets,

the company was focused on building a web-based dashboard that

would allow users to arbitrary explore and visualize event streams.

Interactivity was very important to us; we didn’t want our users sit-

ting around waiting for their data visualizations to update.

In addition to the query latency needs, the system had to be multi-

tenant and highly available. Downtime is costly and many busi-

nesses cannot afford to wait if a system is unavailable in the face of

software upgrades or network failure. Downtime for startups, many

of whom have no internal operations teams, canmean the difference

between business success and failure.

Finally, another key problem that Metamarkets faced in the early

stages of the company was to allow users and alerting systems to be

able to make business decisions in real-time. The time from when

an event was created to when that event could be queried deter-

mined how fast users and systems were able to react to potentially

catastrophic occurences in their systems.

The problems of data exploration, ingestion, and availability span

multiple industries. Since Druid was open sourced in October 2012,

it been deployed as a video, network monitoring, operation moni-

toring, and advertising analytics platform.

3. ARCHITECTURE
A Druid cluster consists of different types of nodes and each node

type is designed to perform a very specific set of things. We believe

this design allows for a separation of functionality concerns and

simplifies the architecture and complexity of the system. There is

minimal interaction between the different node types and hence,

intra-cluster communication failures have minimal impact on data

availability. The different node types operate fairly independent

of each other. To solve complex data analysis problems, the node

types come together to form a fully working system. The name

Druid comes from the Druid class in many role-playing games: it

is a shape-shifter, capable of taking many different forms to fulfill

various different roles in a group. The composition and flow of data

of a Druid cluster are shown in Figure 1.

3.1 Real-time Nodes
Real-time nodes encapsulate the functionality to ingest and query

real-time event streams. Events indexed via these nodes are im-

mediately available for querying. The nodes are only concerned

with events for some small time range and periodically hand off

immutable batches of events they’ve collected over this small time

range to other nodes in the Druid cluster that are specialized in deal-

ing with batches of immutable events.

Real-time nodes maintain an in-memory index buffer for all in-

coming events. These indexes are incrementally populated as new

events are ingested and the indexes are also directly queryable. Druid

virtually behaves as a row store for queries on events that exist in

this JVM heap-based buffer. To avoid heap overflow problems,

real-time nodes persist their in-memory indexes to disk either peri-

odically or after some maximum row limit is reached. This persist

process converts data stored in the in-memory buffer to a column

oriented storage format described in 4. Each persisted index is im-

mutable and real-time nodes load persisted indexes into off-heap

memory such that they can still be queried.

Real-time nodes maintain a consolidated view of their in-memory

index and of all indexes persisted to disk. This unified view allows

all indexes on a node to be queried. On a periodic basis, each node

will schedule a background task that searches for all locally per-

sisted indexes. The task merges these indexes together and builds

an immutable block of data that contains all the events that have

ingested by a real-time node for some span of time. We refer to this

block of data as a ”segment”. During the hand-off stage, a real-time

node uploads this segment to a permanent backup storage, typically

a distributed file system such as S3 [12] or HDFS [31], which Druid

refers to as ”deep storage”. The ingest, persist, merge, and handoff

steps are fluid; there is no data loss during this process. Figure 2

illustrates the process.

Real-time nodes leverage Zookeeper [19] for coordination with the

rest of the Druid cluster. The nodes announce their online state and

the data they are serving in Zookeeper. To better understand the

flow of data through a real-time node, consider the following ex-

ample. First, we start a real-time node at 13:37. The node will an-

nounce that it is serving a segment of data for a period of time from

13:00 to 14:00 and will only accept events with timestamps in this

time range. Every 10 minutes (the persist period is configurable),

the node will flush and persist its in-memory buffer to disk. Near

the end of the hour, the node will likely see events with timestamps

from 14:00 to 15:00. When this occurs, the real-time node prepares

to serve data for the next hour by creating a new in-memory in-

dex and announces that it is also serving a segment for data from

14:00 to 15:00. The node does not immediately merge the indexes

it persisted from 13:00 to 14:00, instead it waits for a configurable

window period for straggling events from 13:00 to 14:00 to come

in. Having a window period minimizes the risk of data loss from

delays in event delivery. At the end of the window period, the real-

time node merges all persisted indexes from 13:00 to 14:00 into a

single immutable segment and hands the segment off. Once this

segment is loaded and queryable somewhere else in the Druid clus-

ter, the real-time node flushes all information about the data it has

collected for 13:00 to 14:00 and unannounces it is serving this data.

This process is shown in Figure 3.

Figure 1: An overview of a Druid cluster and the flow of data through the cluster.

Figure 2: Real-time nodes first buffer events in memory. Af-

ter some period of time, in-memory indexes are persisted to

disk. After another period of time, all persisted indexes are

merged together and handed off. Queries on data hit both the

in-memory index and the persisted indexes.

3.1.1 Availability and Scalability
Real-time nodes are a consumer of data and require a corresponding

producer to provide the data stream. Typically, for data durability

purposes, a message bus such as Kafka [21] sits between the pro-

ducer and the real-time node as shown in Figure 4. Real-time nodes

ingest data by reading events from the message bus. The time from

event creation to event consumption is typically on the order of hun-

dreds of milliseconds.

The purpose of the message bus in Figure 4 is two-fold. First, the

message bus acts as a buffer for incoming events. A message bus

such as Kafka maintains offsets indicating the position in an event

stream that a consumer (a real-time node) has read up to and con-

sumers can programatically update these offsets. Typically, real-

time nodes update this offset each time they persist their in-memory

buffers to disk. This means that in a fail and recover scenario, if a

node has not lost disk, it can reload all persisted indexes from disk

and continue reading events from the last offset it committed. In-

gesting events from a recently committed offset greatly reduces a

node’s recovery time. In practice, we see real-time nodes recover

from such failure scenarios in an order of seconds.

The second purpose of the message bus is to act as a single endpoint

fromwhich multiple real-time nodes can read events. Multiple real-

time nodes can ingest the same set of events from the bus, thus cre-

ating a replication of events. In a scenario where a node completely

fails and does not recover, replicated streams ensure that no data is

lost. A single ingestion endpoint also allows for data streams for

be partitioned such that multiple real-time nodes may each ingest

a portion of a stream. This allows additional real-time nodes to be

seamlessly added. In practice, this model has allowed the largest

production Druid cluster that runs real-time nodes be able to con-

sume raw data at approximately 500 MB/s (150,000 events/s or 2

TB/hour).

3.2 Historical Nodes
Historical nodes encapsulate the functionality to load and serve the

immutable blocks of data (segments) created by real-time nodes. In

many real-world workflows, most of the data loaded in a Druid clus-

ter is immutable and hence, historical nodes are typically the main

workers of aDruid cluster. Historical nodes follow a shared-nothing

architecture and there is no single point of contention among the

nodes. The nodes have no knowledge of one another and are op-

Figure 3: A timelime that represents the typical operations a real-time node undergoes. The node starts, ingests data, persists, and

periodically hands data off. This process repeats indefinitely. The time intervals between different real-time node operations are

configurable.

Figure 4: Multiple real-time nodes can read from the samemes-

sage bus. Each node maintains its own offset.

erationally simple; they only know how to load, drop, and serve

immutable segments.

Similar to real-time nodes, historical nodes announce their online

state and the data they are serving in Zookeeper. Instructions to load

and drop segments are sent over Zookeeper and contain information

about where the segment is located in deep storage and about how

to decompress and process the segment. Before a historical node

downloads a particular segment from deep storage, it first checks a

local cache that maintains information about what segments already

exist on the node. If information about a segment is not present, the

historical node will proceed to download the segment from deep

storage. This process is shown in Figure 5. Once processing is com-

plete, the availability of the segment is announced. At this point,

the segment is queryable. The local cache also allows for histori-

cal nodes to be quickly updated and restarted. On startup, the node

examines its cache and immediately serves whatever data it finds.

Historical nodes can support read consistency because they only

deal with immutable data. Immutable data blocks also enable a sim-

ple parallelization model: historical nodes can scan and aggregate

Figure 5: Historical nodes download immutable segments from

deep storage.

immutable blocks concurrently without blocking.

3.2.1 Tiers
Historical nodes can be grouped in different tiers, where all nodes in

a given tier are identically configured. Different performance and

fault-tolerance parameters can be set for each tier. The purpose of

tiered nodes is to enable higher or lower priority segments to be dis-

tributed according to their importance. For example, it is possible

to spin up a “hot” tier of historical nodes that have a high num-

ber of cores and large memory capacity. The “hot” cluster can be

configured to download more frequently accessed data. A parallel

“cold” cluster can also be created with much less powerful backing

hardware. The “cold” cluster would only contain less frequently

accessed segments.

3.2.2 Availability

Historical nodes depend on Zookeeper for segment load and unload

instructions. If Zookeeper becomes unavailable, historical nodes

are no longer able to serve new data and drop outdated data, how-

ever, because the queries are served over HTTP, historical nodes

are still be able to respond to query requests for the data they are

currently serving. This means that Zookeeper outages do not affect

data availability on historical nodes.

3.3 Broker Nodes
Broker nodes act as query routers to historical and real-time nodes.

Broker nodes understand themetadata published in Zookeeper about

what segments are queryable and where those segments are located.

Broker nodes route incoming queries such that the queries hit the

right historical or real-time nodes. Broker nodes also merge partial

results from historical and real-time nodes before returning a final

consolidated result to the caller.

3.3.1 Caching
Broker nodes contain a cache with a LRU [29, 20] cache invalida-

tion strategy. The cache can use local heap memory or an external

distributed store such as memcached [16]. Each time a broker node

receives a query, it first maps the query to a set of segments. Re-

sults for certain segments may already exist in the cache and there

is no need to recompute them. For any results that do not exist in

the cache, the broker node will forward the query to the historical

and real-time nodes. Once the historical nodes return their results,

the broker will cache these results on a per segment basis for future

use. This process is illustrated in Figure 6. Real-time data is never

cached and hence requests for real-time data will always be for-

warded to real-time nodes. Real-time data is perpetually changing

and caching the results would be unreliable.

The cache also acts as an additional level of data durability. In the

event that all historical nodes fail, it is still possible to query results

if those results already exist in the cache.

3.3.2 Availability
In the event of a total Zookeeper outage, data is still queryable. If

broker nodes are unable to communicate to Zookeeper, they use

their last known segment to node mapping and continue forwarding

queries down to real-time and historical nodes. Broker nodes make

the assumption that the structure of the cluster is the same as it was

before the outage. In practice, this availability model has allowed

our Druid cluster to continue serving queries for several hours while

we diagnosed Zookeeper outages.

3.4 Coordinator Nodes
The Druid coordinator nodes are primarily in charge of data man-

agement and distribution on historical nodes. The coordinator nodes

tell historical nodes to load new data, drop outdated data, repli-

cate data, and move data for load balancing. Druid uses a multi-

version concurrency control swapping protocol for managing im-

mutable segments in order to maintain stable views. If any im-

mutable segment contains data that is wholly obseleted by newer

segments, the outdated segment is dropped from the cluster. Coor-

dinator nodes undergo a leader-election process that determines a

single node that runs the coordinator functionality. The remaining

coordinator nodes act as redundant backups.

A coordinator node runs periodically to determine the current state

of the cluster. It makes decisions by comparing the expected state of

the cluster with the actual state of the cluster at the time of the run.

As with all Druid nodes, coordinator nodes maintains a Zookeeper

connection for current cluster information. The coordinator nodes

also maintain a connection to a MySQL database that contains ad-

ditional operational parameters and configurations. One of the key

pieces of information located in the MySQL database is a table that

contains a list of all segments that should be served by historical

nodes. This table can be updated by any service that creates seg-

ments, for example, real-time nodes. The MySQL database also

contains a rule table that governs how segments are created, de-

stroyed, and replicated in the cluster.

3.4.1 Rules
Rules govern how historical segments are loaded and dropped from

the cluster. Rules indicate how segments should be assigned to dif-

ferent historical node tiers and how many replicates of a segment

should exist in each tier. Rules may also indicate when segments

should be dropped entirely from the cluster. Rules are usually set

for a period of time. For example, a user may use rules to load the

most recent one month’s worth of segments into a ”hot” cluster, the

most recent one year’s worth of segments into a ”cold” cluster, and

drop any segments that are older.

The coordinator nodes load a set of rules from a rule table in the

MySQL database. Rules may be specific to a certain data source

and/or a default set of rules may be configured. The master will

cycle through all available segments and match each segment with

the first rule that applies to it.

3.4.2 Load Balancing
In a typical production environment, queries often hit dozens or

even hundreds of segments. Since each historical node has limited

resources, segments must be distributed among the cluster to en-

sure that the cluster load is not too imbalanced. Determining opti-

mal load distribution requires some knowledge about query patterns

and speeds. Typically, queries cover recent segments spanning con-

tiguous time intervals for a single data source. On average, queries

that access smaller segments are faster.

These query patterns suggest replicating recent historical segments

at a higher rate, spreading out large segments that are close in time to

different historical nodes, and co-locating segments from different

data sources. To optimally distribute and balance segments among

the cluster, we developed a cost-based optimization procedure that

takes into account the segment data source, recency, and size. The

exact details of the algorithm are beyond the scope of this paper and

may be discussed in future literature.

3.4.3 Replication
Coordinator nodes may tell different historical nodes to load copies

of the same segment. The number of replicates in each tier of the

historical compute cluster is fully configurable. Setups that require

high levels of fault tolerance can be configured to have a high num-

ber of replicates. Replicated segments are treated the same as the

originals and follow the same load distribution algorithms. By repli-

cating segments, single historical node failures are transparent in the

Druid cluster. We use this property to our advantage for software

upgrades. We can seamlessly take a historical node offline, update

it, bring it back up, and repeat the process for every historical node

in a cluster. Over the last two years, we have never taken downtime

in our Druid cluster for software upgrades.

3.4.4 Availability

Figure 6: Broker nodes cache per segment results. Every Druid query is mapped to a set of segments. If segment results do not live

in the cache, queries are forwarded down to historical and real-time nodes.

Druid coordinator nodes have two external dependencies: Zookeeper

and MySQL. Coordinator nodes rely on Zookeeper to determine

what historical nodes already exist in the cluster. If Zookeeper be-

comes unavailable, the coordinator will no longer be able to assign,

balance, and drop segments. These operations do not affect data

availability at all and all data in the historical cluster should still be

queryable.

The design principle for responding to MySQL and Zookeeper fail-

ures is the same: if an external dependency responsible for coordi-

nation fails, the clustermaintains the status quo. Druid usesMySQL

to store operational management information and segment meta-

data information about what segments should exist in the cluster. If

MySQL goes down, this information becomes unavailable to coor-

dinator nodes. However, this does not mean data itself is not avail-

able. If coordinator nodes cannot communicate to MySQL, they

will cease to assign new segments and drop outdated ones. Histori-

cal and real-time nodes are still queryable during MySQL outages.

4. STORAGE FORMAT
Data tables in Druid (called data sources) are collections of times-

tamped events and partitioned into a set of segments, where each

segment is typically 5–10 million rows. Formally, we define a seg-

ment as a collection of rows of data that span some period in time.

Segments represent the fundamental storage unit in Druid and repli-

cation and distribution are done at a segment level.

Druid always requires a timestamp column as a method of simplify-

ing data distribution policies, data retention policies, and first-level

query pruning. Druid partitions its data sources into well-defined

time intervals, typically an hour or a day, and may further partition

on values from other columns to achieve the desired segment size.

For example, partitioning the data in Table 1 by hour results in two

segments for 2011-01-01, and partitioning the data by day results

in a single segment. The time granularity to partition segments is a

function of data volume and time range. A data set with timestamps

spread over a year is better partitioned by day, and a data set with

timestamps spread over a day is better partitioned by hour.

Segments are uniquely identified by a data source identifer, the time

interval of the data, and a version string that increases whenever a

new segment is created. The version string indicates the freshness

of segment data; segments with later versions have newer views of

data (over some time range) than segmentswith older versions. This

segment metadata is used by the system for concurrency control;

read operations always access data in a particular time range from

the segments with the latest version identifiers for that time range.

Druid segments are stored in a column orientation. Given that Druid

is best used for aggregating event streams (all data going into Druid

must have a timestamp), the advantages storing aggregate informa-

tion as columns rather than rows are well documented [1]. Col-

umn storage allows for more efficient CPU usage as only what is

needed is actually loaded and scanned. In a row oriented data store,

all columns associated with a row must be scanned as part of an

aggregation. The additional scan time can introduce performance

degradations as high as 250% [6].

Druid has multiple column types to represent various data formats.

Depending on the column type, different compression methods are

used to reduce the cost of storing a column in memory and on disk.

In the example given in Table 1, the page, user, gender, and city

columns only contain strings. String columns can be dictionary en-

coded. Dictionary encoding is a common method to compress data

and has been used in other data stores such as PowerDrill [17]. In

the example in Table 1, we can map each publisher to an unique

integer identifier.

Justin Bieber -> 0
Ke$ha -> 1

This mapping allows us to represent the page column as an integer

array where the array indices correspond to the rows of the original

data set. For the page column, we can represent the unique pages

as follows:

[0, 0, 1, 1]

The resulting integer array lends itself very well to compression

methods. Generic compression algorithms on top of encodings are

extremely common in column-stores. Druid uses the LZF [23] com-

pression algorithm.

Similar compression methods can be applied to numeric columns.

For example, the characters added and characters removed columns

in Table 1 can also be expressed as individual arrays.

Characters Added -> [1800, 2912, 1953, 3194]
Characters Removed -> [25, 42, 17, 170]

In this case, we compress the raw values as opposed to their dictio-

nary representations.

4.1 Inverted Indices
In most real world data analytic workflows, queries are issued for

the aggregated results for some set of metrics where some set of di-

mension specifications aremet. For example, ”howmanyWikipedia

edits were done by users in San Francisco who are also male”?

These queries are filtering the data based on some a boolean ex-

pression of dimension values. In many real world data sets, string

columns are typically dimension columns and metric columns are

typically numeric columns. Druid creates additional lookup indices

Integer array size (bytes)

1e+04

1e+06

1e+02 1e+05 1e+08
Cardinality

C
on

ci
se

 c
om

pr
es

se
d

si
ze

 (
by

te
s)

sorted

sorted

unsorted

Figure 7: Integer array size versus Concise set size.

for string columns such that only those rows that pertain to a par-

ticular query filter are ever scanned.

Let us consider the page column in Table 1. For each unique page

in Table 1, we can form some representation indicating in which

table rows a particular page is seen. We can store this information

in a binary array where the array indices represent our rows. If a

particular page is seen in a certain row, that array index is marked

as 1. For example:

Justin Bieber -> rows [0, 1] -> [1][1][0][0]
Ke$ha -> rows [2, 3] -> [0][0][1][1]

Justin Bieber is seen in rows 0 and 1. This mapping of column
values to row indices forms an inverted index [34]. To know which

rows contain Justin Bieber or Ke$ha, we can OR together the

two arrays.

[0][1][0][1] OR [1][0][1][0] = [1][1][1][1]

This approach of performing Boolean operations on large bitmap

sets is commonly used in search engines. Bitmap compression al-

gorithms are a well-defined area of research and often utilize run-

length encoding. Popular algorithms include Byte-aligned Bitmap

Code [3], Word-Aligned Hybrid (WAH) code [39], and Partitioned

Word-Aligned Hybrid (PWAH) compression [37]. Druid opted to

use the Concise algorithm [10] as it can outperform WAH by re-

ducing the size of the compressed bitmaps by up to 50%. Figure 7

illustrates the number of bytes using Concise compression versus

using an integer array. The results were generated on a cc2.8xlarge

systemwith a single thread, 2G heap, 512m young gen, and a forced

GC between each run. The data set is a single day’s worth of data

collected from the Twitter garden hose [36] data stream. The data

set contains 2,272,295 rows and 12 dimensions of varying cardinal-

ity. As an additional comparison, we also resorted the data set rows

to maximize compression.

In the unsorted case, the total Concise size was 53,451,144 bytes

and the total integer array size was 127,248,520 bytes. Overall,

Concise compressed sets are about 42% smaller than integer ar-

rays. In the sorted case, the total Concise compressed size was

43,832,884 bytes and the total integer array size was 127,248,520

bytes. What is interesting to note is that after sorting, global com-

pression only increased minimally. The total Concise set size to

total integer array size is 34%. It is also interesting to note that as

the cardinality of a dimension approaches the total number of rows

in a data set, integer arrays require less space than Concise sets and

become a better alternative.

4.2 Storage Engine
Druid’s persistence components allows for different storage engines

to be plugged in, similar to Dynamo [12]. These storage engines

may store data in in-memory structures such as the JVM heap or

in memory-mapped structures. The ability to swap storage engines

allows for Druid to be configured depending on a particular applica-

tion’s specifications. An in-memory storage engine may be opera-

tionally more expensive than a memory-mapped storage engine but

could be a better alternative if performance is critical. By default,

a memory-mapped storage engine is used.

Druid relies on the operating system to page segments in and out

of memory. Given that segments can only be scanned if they are

loaded in memory, a memory-mapped storage engine allows re-

cent segments to retain in memory whereas segments that are never

queried are paged out of memory. The main drawback with using

the memory-mapped storage engine is in the event a query requires

more segments to be paged into memory than a given node has ca-

pacity for. In this case, query performance will suffer from the cost

of paging segments in and out of memory.

5. QUERY API
Druid has its own query language and accepts queries as POST re-

quests. Broker, historical, and real-time nodes all share the same

query API.

The body of the POST request is a JSON object containing key-

value pairs specifying various query parameters. A typical query

will contain the data source name, the granularity of the result data,

time range of interest, the type of request, and the metrics to ag-

gregate over. The result will also be a JSON object containing the

aggregated metrics over the time period.

Most query types will also support a filter set. A filter set is a

Boolean expression of dimension name and value pairs. Any num-

ber and combination of dimensions and values may be specified.

When a filter set is provided, only the subset of the data that per-

tains to the filter set will be scanned. The ability to handle complex

nested filter sets is what enables Druid to drill into data at any depth.

The exact query syntax depends on the query type and the informa-

tion requested. A sample count query over a week of data is shown

below:

{
"queryType" : "timeseries",
"dataSource" : "wikipedia",
"intervals" : "2013-01-01/2013-01-08",
"filter" : {
"type" : "selector",
"dimension" : "page",
"value" : "Ke$ha"

},
"granularity" : "day",
"aggregations" : [

{
"type" : "count",
"name" : "rows"

}
]

}

The query shown above will return a count of the number of rows in

the wikipedia datasource from 2013-01-01 to 2013-01-08, filtered

for only those rowswhere the value of the ”page” dimension is equal

to ”Ke$ha”. The results will be bucketed by day and will be a JSON

array of the following form:

[
{
"timestamp": "2012-01-01T00:00:00.000Z",
"result": {
"rows": 393298

}
},
{
"timestamp": "2012-01-02T00:00:00.000Z",
"result": {
"rows": 382932

}
},
...
{
"timestamp": "2012-01-07T00:00:00.000Z",
"result": {
"rows": 1337

}
}

]

Druid supports many types of aggregations including double sums,

long sums, minimums, maximums, and several others. Druid also

supports complex aggregations such as cardinality estimation and

approxmiate quantile estimation. The results of aggregations can be

combined in mathematical expressions to form other aggregations.

The query API is highly customizable and can be extended to fil-

ter and group results based on almost any arbitrary condition. It is

beyond the scope of this paper to fully describe the query API but

more information can be found online3. We are also in the process

of extending the Druid API to understand SQL.

6. PERFORMANCE BENCHMARKS
To illustrate Druid’s performance, we conducted a series of exper-

iments that focused on measuring Druid’s query and data ingestion

capabilities.

6.1 Query Performance
To benchmark Druid query performance, we created a large test

cluster with 6TB of uncompressed data, representing tens of bil-

lions of fact rows. The data set contained more than a dozen di-

mensions, with cardinalities ranging from the double digits to tens

of millions. We computed four metrics for each row (counts, sums,

and averages). The data was sharded first on timestamp and then

3http://druid.io/docs/latest/Querying.html

●

●

●

0

10

20

30

30 40 50 60 70
Number of Nodes

C
lu

st
er

 S
ca

n
R

at
e

(b
ill

io
n

ro
w

s/
se

c.
)

query

● Query 1

Query 2

Query 3

Query 4

Query 5

Query 6

Figure 8: Druid cluster scan rate with lines indicating linear

scaling from 25 nodes.

●

●

●

10

20

30

30 40 50 60 70
Number of Nodes

C
or

e
S

ca
n

R
at

e
(m

ill
io

n
ro

w
s/

se
c.

)

query

● Query 1

Query 2

Query 3

Query 4

Query 5

Query 6

Figure 9: Druid core scan rate.

on dimension values, creating thousands of shards roughly 8 mil-

lion fact rows apiece.

The cluster used in the benchmark consisted of 100 historical nodes,

each with 16 cores, 60GB of RAM, 10 GigE Ethernet, and 1TB of

disk space. Collectively, the cluster comprised of 1600 cores, 6TB

or RAM, sufficiently fast Ethernet andmore than enough disk space.

SQL statements are included in Table 2. These queries are meant

to represent some common queries that are made against Druid for

typical data analysis workflows. Although Druid has its own query

language, we choose to translate the queries into SQL to better de-

scribe what the queries are doing. Please note:

• The timestamp range of the queries encompassed all data.

• Each machine was a 16-core machine with 60GB RAM and

1TB of local disk. The machine was configured to only use

15 threads for processing queries.

• A memory-mapped storage engine was used (the machine

was configured to memory map the data instead of loading

it into the Java heap.)

Figure 8 shows the cluster scan rate and Figure 9 shows the core

scan rate. In Figure 8 we also include projected linear scaling based

http://druid.io/docs/latest/Querying.html

Table 2: Druid Queries

Query # Query

1 SELECT count(*) FROM _table_ WHERE timestamp ≥ ? AND timestamp < ?
2 SELECT count(*), sum(metric1) FROM _table_ WHERE timestamp ≥ ? AND timestamp < ?
3 SELECT count(*), sum(metric1), sum(metric2), sum(metric3), sum(metric4) FROM _table_ WHERE

timestamp ≥ ? AND timestamp < ?
4 SELECT high_card_dimension, count(*) AS cnt FROM _table_ WHERE timestamp ≥ ? AND

timestamp < ? GROUP BY high_card_dimension ORDER BY cnt limit 100
5 SELECT high_card_dimension, count(*) AS cnt, sum(metric1) FROM _table_ WHERE timestamp ≥

? AND timestamp < ? GROUP BY high_card_dimension ORDER BY cnt limit 100
6 SELECT high_card_dimension, count(*) AS cnt, sum(metric1), sum(metric2), sum(metric3),

sum(metric4) FROM _table_ WHERE timestamp ≥ ? AND timestamp < ? GROUP BY
high_card_dimension ORDER BY cnt limit 100

on the results of the 25 core cluster. In particular, we observe di-

minishing marginal returns to performance in the size of the clus-

ter. Under linear scaling, the first SQL count query (query 1) would

have achieved a speed of 37 billion rows per second on our 75 node

cluster. In fact, the speed was 26 billion rows per second. How-

ever, queries 2-6 maintain a near-linear speedup up to 50 nodes:

the core scan rates in Figure 9 remain nearly constant. The increase

in speed of a parallel computing system is often limited by the time

needed for the sequential operations of the system, in accordance

with Amdahl’s law [2].

The first query listed in Table 2 is a simple count, achieving scan

rates of 33M rows/second/core. We believe the 75 node cluster was

actually overprovisioned for the test dataset, explaining the modest

improvement over the 50 node cluster. Druid’s concurrency model

is based on shards: one thread will scan one shard. If the number of

segments on a historical node modulo the number of cores is small

(e.g. 17 segments and 15 cores), then many of the cores will be idle

during the last round of the computation.

When we include more aggregations we see performance degrade.

This is because of the column-oriented storage format Druid em-

ploys. For the count(*) queries, Druid only has to check the times-
tamp column to satisfy the “where” clause. As we add metrics, it

has to also load those metric values and scan over them, increasing

the amount of memory scanned.

6.2 Data Ingestion Performance
To measure Druid’s data latency latency, we spun up a single real-

time node with the following configurations:

• JVM arguments: -Xmx2g -Duser.timezone=UTC -Dfile.en-

coding=UTF-8 -XX:+HeapDumpOnOutOfMemoryError

• CPU: 2.3 GHz Intel Core i7

Druid’s data ingestion latency is heavily dependent on the complex-

ity of the data set being ingested. The data complexity is determined

by the number of dimensions in each event, the number of metrics in

each event, and the types of aggregations we want to perform as we

roll up data to a certain time granularity. With the most basic data

set (one that only has a timestamp column), our setup can ingest

data at a rate of 800k events/sec/node, which is really just a mea-

surement of how fast we can deserialize events. Real world data

sets are never this simple. To simulate more real-world ingestion

rates, we created a data set with 5 dimensions and a single metric.

Figure 10: Varying the cardinality of a single dimension, we can

see the impact on throughput.

Figure 11: Increasing the number of dimensions of our data set,

we see a similar decline in throughput.

4 out of the 5 dimensions have a cardinality less than 100, and we

varied the cardinality of the final dimension. The results of varying

the cardinality of a dimension is shown in Figure 10.

In Figure 11, we instead vary the number of dimensions in our data

set. Each dimension has a cardinality less than 100. We can see a

similar decline in ingestion throughput as the number of dimensions

increases.

Finally, keeping our number of dimensions constant at 5, with each

dimension having a cardinality in the 0-100 range, we can see a sim-

ilar decline in throughput when we increase the number of metrics

in the data set. For most real world data sets, the number of met-

rics tends to be less than the number of dimensions. Hence, we can

see that adding a few new metrics does not substantially impact the

Figure 12: Adding newmetrics to a data set decreases ingestion

latency, however, in most real world data sets, the number of

metrics in a data set tends to be low and the impact of adding

them is overly substantial.

ingestion latency.

7. RELATED WORK
Cattell [7] maintains a great summary about existing Scalable SQL

and NoSQL data stores. Hu [18] contributed another great sum-

mary for streaming databases. Druid feature-wise sits somewhere

betweenGoogle’s Dremel [27] and PowerDrill [17]. Druid hasmost

of the features implemented in Dremel (Dremel handles arbitrary

nested data structures while Druid only allows for a single level of

array-based nesting) and many of the interesting compression algo-

rithms mentioned in PowerDrill.

Although Druid builds on many of the same principles as other dis-

tributed columnar data stores [15], many of these data stores are

designed to be more generic key-value stores [33] and do not sup-

port computation directly in the storage layer. These data stores

remain popular solutions in the traditional data warehousing space.

Other popular systems designed for some of the same use cases that

Druid is designed to solve include in-memory databases such as

SAP’s HANA [14] and VoltDB [38]. Druid is a front-office sys-

tem designed such that user-facing dashboards can be built on top

of it. Similar to [30], Druid has analytical features built in. The

main features Druid offers over traditional data warehousing solu-

tions are real-time data ingestion, interactive queries and interactive

query latencies. In terms of real-time ingestion and processing of

data, Trident/Storm [26] and Streaming Spark [40] are other popular

real-time computation systems, although they lack the data storage

capabilities of Druid. Spark/Shark [13] are also doing similar work

in the area of fast data analysis on large scale data sets. Cloudera

Impala [9] is another system focused on optimizing querying per-

formance, but more so in Hadoop environments.

Druid leverages a unique combination of algorithms in its archi-

tecture. Although we believe no other data store has the same set

of functionality as Druid, some of Druid’s optimization techniques

such as using inverted indices to perform fast filters are also used in

other data stores [25].

8. CONCLUSIONS
In this paper, we presented Druid, a distributed, column-oriented,

real-time analytical data store. Druid is designed to power high

performance applications and is optimized for low query latencies.

Druid ingests data in real-time and is fault-tolerant. We discussed

Druid performance benchmarks on billion row data sets. We sum-

marized key architecture aspects such as the storage format, query

language, and general execution. In the future, we plan to cover

the different algorithms we’ve developed for Druid and how other

systems may plug into Druid in greater detail.

9. ACKNOWLEDGEMENTS
Druid could not have been built without the help of many great en-

gineers at Metamarkets and in the community. We want to thank

everyone that has contributed to the Druid codebase for their in-

valuable support. In particular we want to thank Steve Harris for

providing feedback on improving this paper.

10. REFERENCES
[1] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores

vs. row-stores: How different are they really? In Proceedings

of the 2008 ACM SIGMOD international conference on

Management of data, pages 967–980. ACM, 2008.

[2] G. M. Amdahl. Validity of the single processor approach to

achieving large scale computing capabilities. In Proceedings

of the April 18-20, 1967, spring joint computer conference,

pages 483–485. ACM, 1967.

[3] G. Antoshenkov. Byte-aligned bitmap compression. In Data

Compression Conference, 1995. DCC’95. Proceedings, page

476. IEEE, 1995.

[4] Apache. Apache solr.

http://lucene.apache.org/solr/, February 2013.
[5] S. Banon. Elasticsearch.

http://www.elasticseach.com/, July 2013.
[6] C. Bear, A. Lamb, and N. Tran. The vertica database: Sql

rdbms for managing big data. In Proceedings of the 2012

workshop on Management of big data systems, pages 37–38.

ACM, 2012.

[7] R. Cattell. Scalable sql and nosql data stores. ACM SIGMOD

Record, 39(4):12–27, 2011.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber. Bigtable: A distributed storage system for structured

data. ACM Transactions on Computer Systems (TOCS),

26(2):4, 2008.

[9] Cloudera impala. http://blog.cloudera.com/blog,
March 2013.

[10] A. Colantonio and R. Di Pietro. Concise: Compressed

‘n’composable integer set. Information Processing Letters,

110(16):644–650, 2010.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified data

processing on large clusters. Communications of the ACM,

51(1):107–113, 2008.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: amazon’s highly available

key-value store. In ACM SIGOPS Operating Systems

Review, volume 41, pages 205–220. ACM, 2007.

[13] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin,

S. Shenker, and I. Stoica. Shark: fast data analysis using

coarse-grained distributed memory. In Proceedings of the

2012 international conference on Management of Data,

pages 689–692. ACM, 2012.

[14] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and

W. Lehner. Sap hana database: data management for modern

business applications. ACM Sigmod Record, 40(4):45–51,

2012.

http://lucene.apache.org/solr/
http://www.elasticseach.com/
http://blog.cloudera.com/blog

[15] B. Fink. Distributed computation on dynamo-style

distributed storage: riak pipe. In Proceedings of the eleventh

ACM SIGPLAN workshop on Erlang workshop, pages

43–50. ACM, 2012.

[16] B. Fitzpatrick. Distributed caching with memcached. Linux

journal, (124):72–74, 2004.

[17] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, and

M. Nunkesser. Processing a trillion cells per mouse click.

Proceedings of the VLDB Endowment, 5(11):1436–1446,

2012.

[18] B. Hu. Stream database survey. 2011.

[19] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:

Wait-free coordination for internet-scale systems. In USENIX

ATC, volume 10, 2010.

[20] C. S. Kim. Lrfu: A spectrum of policies that subsumes the

least recently used and least frequently used policies. IEEE

Transactions on Computers, 50(12), 2001.

[21] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed

messaging system for log processing. In Proceedings of 6th

International Workshop on Networking Meets Databases

(NetDB), Athens, Greece, 2011.

[22] A. Lakshman and P. Malik. Cassandra—a decentralized

structured storage system. Operating systems review,

44(2):35, 2010.

[23] Liblzf. http://freecode.com/projects/liblzf, March

2013.

[24] LinkedIn. Senseidb. http://www.senseidb.com/, July
2013.

[25] R. MacNicol and B. French. Sybase iq multiplex-designed

for analytics. In Proceedings of the Thirtieth international

conference on Very large data bases-Volume 30, pages

1227–1230. VLDB Endowment, 2004.

[26] N. Marz. Storm: Distributed and fault-tolerant realtime

computation. http://storm-project.net/, February
2013.

[27] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,

M. Tolton, and T. Vassilakis. Dremel: interactive analysis of

web-scale datasets. Proceedings of the VLDB Endowment,

3(1-2):330–339, 2010.

[28] D. Miner. Unified analytics platform for big data. In

Proceedings of the WICSA/ECSA 2012 Companion Volume,

pages 176–176. ACM, 2012.

[29] E. J. O’neil, P. E. O’neil, and G. Weikum. The lru-k page

replacement algorithm for database disk buffering. In ACM

SIGMOD Record, volume 22, pages 297–306. ACM, 1993.

[30] Paraccel analytic database.

http://www.paraccel.com/resources/Datasheets/
ParAccel-Core-Analytic-Database.pdf, March 2013.

[31] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The

hadoop distributed file system. In Mass Storage Systems and

Technologies (MSST), 2010 IEEE 26th Symposium on, pages

1–10. IEEE, 2010.

[32] M. Singh and B. Leonhardi. Introduction to the ibm netezza

warehouse appliance. In Proceedings of the 2011 Conference

of the Center for Advanced Studies on Collaborative

Research, pages 385–386. IBM Corp., 2011.

[33] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,

M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,

E. O’Neil, et al. C-store: a column-oriented dbms. In

Proceedings of the 31st international conference on Very

large data bases, pages 553–564. VLDB Endowment, 2005.
[34] A. Tomasic and H. Garcia-Molina. Performance of inverted

indices in shared-nothing distributed text document

information retrieval systems. In Parallel and Distributed

Information Systems, 1993., Proceedings of the Second

International Conference on, pages 8–17. IEEE, 1993.

[35] E. Tschetter. Introducing druid: Real-time analytics at a

billion rows per second. http://metamarkets.com/2011/
druid-part-i-real-time-analytics-at-a-billion-rows-per-second/,
April 2011.

[36] Twitter public streams. https://dev.twitter.com/
docs/streaming-apis/streams/public, March 2013.

[37] S. J. van Schaik and O. de Moor. A memory efficient

reachability data structure through bit vector compression. In

Proceedings of the 2011 international conference on

Management of data, pages 913–924. ACM, 2011.

[38] L. VoltDB. Voltdb technical overview.

https://voltdb.com/, 2010.
[39] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap

indices with efficient compression. ACM Transactions on

Database Systems (TODS), 31(1):1–38, 2006.

[40] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.

Discretized streams: an efficient and fault-tolerant model for

stream processing on large clusters. In Proceedings of the 4th

USENIX conference on Hot Topics in Cloud Computing,

pages 10–10. USENIX Association, 2012.

http://freecode.com/projects/liblzf
http://www.senseidb.com/
http://storm-project.net/
http://www.paraccel.com/resources/Datasheets/ParAccel-Core-Analytic-Database.pdf
http://www.paraccel.com/resources/Datasheets/ParAccel-Core-Analytic-Database.pdf
http://metamarkets.com/2011/druid-part-i-real-time-analytics-at-a-billion-rows-per-second/
http://metamarkets.com/2011/druid-part-i-real-time-analytics-at-a-billion-rows-per-second/
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/streams/public
https://voltdb.com/

	Introduction
	Problem Definition
	Architecture
	Real-time Nodes
	Availability and Scalability

	Historical Nodes
	Tiers
	Availability

	Broker Nodes
	Caching
	Availability

	Coordinator Nodes
	Rules
	Load Balancing
	Replication
	Availability

	Storage Format
	Inverted Indices
	Storage Engine

	Query API
	Performance Benchmarks
	Query Performance
	Data Ingestion Performance

	Related Work
	Conclusions
	Acknowledgements
	References

